Suppr超能文献

慢性肺部感染:宿主如何适应?

in Chronic Lung Infections: How to Adapt Within the Host?

机构信息

Department of Medicine, McGill University, Montreal, QC, Canada.

Research Institute of the McGill University Health Center, Montreal, QC, Canada.

出版信息

Front Immunol. 2018 Oct 22;9:2416. doi: 10.3389/fimmu.2018.02416. eCollection 2018.

Abstract

Bacteria that readily adapt to different natural environments, can also exploit this versatility upon infection of the host to persist. , a ubiquitous Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable opportunistic pathogen in compromised hosts. When pathogenic, causes invasive and highly lethal disease in certain compromised hosts. In others, such as individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung infections which persist for decades. During chronic lung infections, adapts to the host environment by evolving toward a state of reduced bacterial invasiveness that favors bacterial persistence without causing overwhelming host injury. Host responses to chronic infections are complex and dynamic, ranging from vigorous activation of innate immune responses that are ineffective at eradicating the infecting bacteria, to relative host tolerance and dampened activation of host immunity. This review will examine how subverts host defenses and modulates immune and inflammatory responses during chronic infection. This dynamic interplay between host and pathogen is a major determinant in the pathogenesis of chronic lung infections.

摘要

能够轻易适应不同自然环境的细菌,在感染宿主时也能利用这种多功能性来持续存在。 是一种普遍存在的革兰氏阴性菌,对健康个体无害,但在受损宿主中却是一种强大的机会性病原体。当致病性时, 在某些受损宿主中会引起侵袭性和高度致命的疾病。在其他情况下,如患有遗传性疾病囊性纤维化的个体,这种病原体可导致持续数十年的慢性肺部感染。在慢性肺部感染期间, 通过向细菌侵袭性降低的状态进化来适应宿主环境,从而有利于细菌的持续存在,而不会导致宿主过度损伤。宿主对慢性 感染的反应是复杂和动态的,从先天免疫反应的强烈激活,这些反应不能有效根除感染细菌,到宿主的相对耐受和宿主免疫的减弱激活。这篇综述将探讨 如何在慢性感染期间破坏宿主防御并调节免疫和炎症反应。宿主和病原体之间的这种动态相互作用是慢性 肺部感染发病机制的主要决定因素。

相似文献

1
in Chronic Lung Infections: How to Adapt Within the Host?
Front Immunol. 2018 Oct 22;9:2416. doi: 10.3389/fimmu.2018.02416. eCollection 2018.
2
Pathogen-host interactions in Pseudomonas aeruginosa pneumonia.
Am J Respir Crit Care Med. 2005 Jun 1;171(11):1209-23. doi: 10.1164/rccm.200408-1044SO. Epub 2005 Feb 1.
3
Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections.
Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439. doi: 10.1165/rcmb.2017-0321TR.
4
Pseudomonas aeruginosa: new insights into pathogenesis and host defenses.
Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033. Epub 2013 Mar 15.
5
Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments.
PLoS Pathog. 2018 Feb 2;14(2):e1006842. doi: 10.1371/journal.ppat.1006842. eCollection 2018 Feb.
6
Airway immunometabolites fuel Pseudomonas aeruginosa infection.
Respir Res. 2020 Dec 10;21(1):326. doi: 10.1186/s12931-020-01591-x.
7
in chronic lung disease: untangling the dysregulated host immune response.
Front Immunol. 2024 Jun 28;15:1405376. doi: 10.3389/fimmu.2024.1405376. eCollection 2024.
8
Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung.
J Innate Immun. 2018;10(5-6):442-454. doi: 10.1159/000487515. Epub 2018 Apr 4.

引用本文的文献

1
NorA and Tet38 efflux pumps enable survival in the cystic fibrosis airway environment, resistance to antibiotics, and coinfection with .
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0046025. doi: 10.1128/aac.00460-25. Epub 2025 Jul 9.
2
Direct assessment of airway microbiota in primary ciliary dyskinesia end-stage lung disease.
ERJ Open Res. 2025 Jun 9;11(3). doi: 10.1183/23120541.01193-2024. eCollection 2025 May.
6
R-pyocins as targeted antimicrobials against Pseudomonas aeruginosa.
NPJ Antimicrob Resist. 2025 Feb 28;3(1):17. doi: 10.1038/s44259-025-00088-1.
8
Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms.
Adv Sci (Weinh). 2025 Jan;12(1):e2410893. doi: 10.1002/advs.202410893. Epub 2024 Nov 12.

本文引用的文献

3
4
Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments.
PLoS Pathog. 2018 Feb 2;14(2):e1006842. doi: 10.1371/journal.ppat.1006842. eCollection 2018 Feb.
5
Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13242-13247. doi: 10.1073/pnas.1710433114. Epub 2017 Nov 27.
7
Corticosteroid-resistant inflammatory signalling in -infected bronchial cells.
ERJ Open Res. 2017 Jun 19;3(2). doi: 10.1183/23120541.00144-2016. eCollection 2017 Apr.
8
Bacterial Secretant from Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner.
Front Immunol. 2017 Mar 27;8:333. doi: 10.3389/fimmu.2017.00333. eCollection 2017.
10
Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms.
Sci Adv. 2016 May 20;2(5):e1501632. doi: 10.1126/sciadv.1501632. eCollection 2016 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验