Suppr超能文献

免疫学家单细胞测序指南

A Single-Cell Sequencing Guide for Immunologists.

机构信息

Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.

Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.

出版信息

Front Immunol. 2018 Oct 23;9:2425. doi: 10.3389/fimmu.2018.02425. eCollection 2018.

Abstract

In recent years there has been a rapid increase in the use of single-cell sequencing (scRNA-seq) approaches in the field of immunology. With the wide range of technologies available, it is becoming harder for users to select the best scRNA-seq protocol/platform to address their biological questions of interest. Here, we compared the advantages and limitations of four commonly used scRNA-seq platforms in order to clarify their suitability for different experimental applications. We also address how the datasets generated by different scRNA-seq platforms can be integrated, and how to identify unknown populations of single cells using unbiased bioinformatics methods.

摘要

近年来,单细胞测序(scRNA-seq)方法在免疫学领域的应用迅速增加。随着各种技术的广泛应用,用户越来越难以选择最佳的 scRNA-seq 方案/平台来解决他们感兴趣的生物学问题。在这里,我们比较了四种常用的 scRNA-seq 平台的优缺点,以阐明它们在不同实验应用中的适用性。我们还讨论了如何整合来自不同 scRNA-seq 平台的数据集,以及如何使用无偏生物信息学方法识别未知的单细胞群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1abf/6205970/0bfa942586e5/fimmu-09-02425-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验