Suppr超能文献

计算系统生物学的下一步是什么?

What's next for computational systems biology?

作者信息

Voit Eberhard O, Shah Ashti M, Olivença Daniel, Vodovotz Yoram

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.

Center for Inflammation and Regeneration Modeling, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Front Syst Biol. 2023 Sep 19;3:1250228. doi: 10.3389/fsysb.2023.1250228. eCollection 2023.

Abstract

Largely unknown just a few decades ago, computational systems biology is now a central methodology for biological and medical research. This amazing ascent raises the question of what the community should do next. The article outlines our personal vision for the future of computational systems biology, suggesting the need to address both mindsets and methodologies. We present this vision by focusing on current and anticipated research goals, the development of strong computational tools, likely prominent applications, education of the next-generation of scientists, and outreach to the public. In our opinion, two classes of broad research goals have emerged in recent years and will guide future efforts. The first goal targets computational models of increasing size and complexity, aimed at solving emerging health-related challenges, such as realistic whole-cell and organ models, disease simulators and digital twins, clinical trials, and clinically translational applications in the context of therapeutic drug development. Such large models will also lead us toward solutions to pressing issues in agriculture and environmental sustainability, including sufficient food availability and life in changing habitats. The second goal is a deep understanding of the essence of system designs and strategies with which nature solves problems. This understanding will help us explain observed biological structures and guide forays into synthetic biological systems. Regarding effective methodologies, we suggest efforts toward automated data pipelines from raw biomedical data all the way to spatiotemporal mechanistic model. These will be supported by dynamic methods of statistics, machine learning, artificial intelligence and streamlined strategies of dynamic model design, striking a fine balance between modeling realistic complexity and abstracted simplicity. Finally, we suggest the need for a concerted, community-wide emphasis on effective education in systems biology, implemented as a combination of formal instruction and hands-on mentoring. The educational efforts should furthermore be extended toward the public through books, blogs, social media, and interactive networking opportunities, with the ultimate goal of training in state-of-the-art technology while recapturing the lost art of synthesis.

摘要

仅仅几十年前还鲜为人知的计算系统生物学,如今已成为生物学和医学研究的核心方法。这一惊人的崛起引发了一个问题:该领域接下来该做什么。本文概述了我们对计算系统生物学未来的个人愿景,表明需要同时关注思维模式和方法。我们通过关注当前和预期的研究目标、强大计算工具的开发、可能突出的应用、下一代科学家的教育以及向公众推广来呈现这一愿景。在我们看来,近年来出现了两类广泛的研究目标,并将指导未来的工作。第一个目标针对规模和复杂性不断增加的计算模型,旨在解决新出现的与健康相关的挑战,如逼真的全细胞和器官模型、疾病模拟器和数字孪生、临床试验以及治疗药物开发背景下的临床转化应用。这样的大型模型还将引领我们找到解决农业和环境可持续性方面紧迫问题的方法,包括充足的食物供应和在不断变化的栖息地中的生存。第二个目标是深入理解自然解决问题所采用的系统设计和策略的本质。这种理解将帮助我们解释观察到的生物结构,并指导对合成生物系统的探索。关于有效的方法,我们建议努力构建从原始生物医学数据到时空机制模型的自动化数据管道。这些将得到动态统计方法、机器学习、人工智能以及动态模型设计的简化策略的支持,在模拟现实复杂性和抽象简单性之间取得良好平衡。最后,我们建议需要在全领域共同强调系统生物学的有效教育,通过正式教学和实践指导相结合来实施。此外,教育工作应通过书籍、博客、社交媒体和互动网络机会向公众扩展,最终目标是在培训最先进技术的同时重拾失落的综合艺术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61a9/12342038/b98b12063915/fsysb-03-1250228-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验