Suppr超能文献

用于同步肌肉信号采集和手势识别的便携式无线多节点表面肌电系统的设计与测试

Design and Testing of a Portable Wireless Multi-Node sEMG System for Synchronous Muscle Signal Acquisition and Gesture Recognition.

作者信息

Zhu Xiaoying, Li Chaoxin, Liu Xiaoman, Tong Yao, Liu Chang, Guo Kai

机构信息

Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

出版信息

Micromachines (Basel). 2025 Feb 27;16(3):279. doi: 10.3390/mi16030279.

Abstract

Surface electromyography (sEMG) is an important non-invasive method used in muscle function assessment, rehabilitation and human-machine interaction. However, existing commercial devices often lack sufficient channels, making it challenging to simultaneously acquire signals from multiple muscle sites.In this acticle, we design a portable multi-node sEMG acquisition system based on the TCP protocol to overcome the channel limitations of commercial sEMG detection devices. The system employs the STM32L442KCU6 microcontroller as the main control unit, with onboard ADC for analog-to-digital conversion of sEMG signals. Data filtered by analogy filter is transmitted via an ESP8266 WiFi module to the host computer for display and storage. By configuring Bluetooth broadcasting channels, the system can support up to 40 sEMG detection nodes. A gesture recognition algorithm is implemented to identify grasping motions with varying channel configurations. Experimental results demonstrate that with two channels, the Gradient Boosting Decision Tree (GBDT) algorithm achieves a recognition accuracy of 99.4%, effectively detecting grasping motions.

摘要

表面肌电图(sEMG)是一种用于肌肉功能评估、康复和人机交互的重要非侵入性方法。然而,现有的商业设备往往通道数量不足,使得同时从多个肌肉部位采集信号具有挑战性。在本文中,我们设计了一种基于TCP协议的便携式多节点sEMG采集系统,以克服商业sEMG检测设备的通道限制。该系统采用STM32L442KCU6微控制器作为主控制单元,板载ADC用于对sEMG信号进行模数转换。经模拟滤波器滤波后的数据通过ESP8266 WiFi模块传输到主机进行显示和存储。通过配置蓝牙广播通道,该系统最多可支持40个sEMG检测节点。实现了一种手势识别算法,以识别不同通道配置下的抓握动作。实验结果表明,使用两个通道时,梯度提升决策树(GBDT)算法的识别准确率达到99.4%,能够有效检测抓握动作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验