文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用嗅球振荡进行全脑睡眠评分,并实时监测麻醉深度。

Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth.

机构信息

Team Memory, Oscillations and Brain States (MOBs), Plasticité du cerveau, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.

出版信息

PLoS Biol. 2018 Nov 8;16(11):e2005458. doi: 10.1371/journal.pbio.2005458. eCollection 2018 Nov.


DOI:10.1371/journal.pbio.2005458
PMID:30408025
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6224033/
Abstract

Real-time tracking of vigilance states related to both sleep or anaesthesia has been a goal for over a century. However, sleep scoring cannot currently be performed with brain signals alone, despite the deep neuromodulatory transformations that accompany sleep state changes. Therefore, at heart, the operational distinction between sleep and wake is that of immobility and movement, despite numerous situations in which this one-to-one mapping fails. Here we demonstrate, using local field potential (LFP) recordings in freely moving mice, that gamma (50-70 Hz) power in the olfactory bulb (OB) allows for clear classification of sleep and wake, thus providing a brain-based criterion to distinguish these two vigilance states without relying on motor activity. Coupled with hippocampal theta activity, it allows the elaboration of a sleep scoring algorithm that relies on brain activity alone. This method reaches over 90% homology with classical methods based on muscular activity (electromyography [EMG]) and video tracking. Moreover, contrary to EMG, OB gamma power allows correct discrimination between sleep and immobility in ambiguous situations such as fear-related freezing. We use the instantaneous power of hippocampal theta oscillation and OB gamma oscillation to construct a 2D phase space that is highly robust throughout time, across individual mice and mouse strains, and under classical drug treatment. Dynamic analysis of trajectories within this space yields a novel characterisation of sleep/wake transitions: whereas waking up is a fast and direct transition that can be modelled by a ballistic trajectory, falling asleep is best described as a stochastic and gradual state change. Finally, we demonstrate that OB oscillations also allow us to track other vigilance states. Non-REM (NREM) and rapid eye movement (REM) sleep can be distinguished with high accuracy based on beta (10-15 Hz) power. More importantly, we show that depth of anaesthesia can be tracked in real time using OB gamma power. Indeed, the gamma power predicts and anticipates the motor response to stimulation both in the steady state under constant anaesthetic and dynamically during the recovery period. Altogether, this methodology opens the avenue for multi-timescale characterisation of brain states and provides an unprecedented window onto levels of vigilance.

摘要

一个多世纪以来,实时跟踪与睡眠或麻醉相关的警觉状态一直是一个目标。然而,尽管睡眠状态变化伴随着深度的神经调制转换,但目前仅凭大脑信号还无法进行睡眠评分。因此,从本质上讲,睡眠和清醒的操作区别在于不动和运动,尽管在许多情况下,这种一一映射并不成立。在这里,我们使用自由活动的小鼠的局部场电位 (LFP) 记录证明,嗅球 (OB) 中的伽马 (50-70 Hz) 功率可以清楚地区分睡眠和清醒,从而提供了一种基于大脑的标准,无需依赖运动活动即可区分这两种警觉状态。与海马 theta 活动相结合,它可以为仅依赖大脑活动的睡眠评分算法的制定提供帮助。这种方法与基于肌肉活动 (肌电图 [EMG]) 和视频跟踪的经典方法的相似度超过 90%。此外,与 EMG 相反,OB 伽马功率允许在类似恐惧相关冻结的模糊情况下正确区分睡眠和不动。我们使用海马 theta 振荡和 OB 伽马振荡的瞬时功率来构建一个 2D 相空间,该相空间在整个时间、个体小鼠和小鼠品系中以及在经典药物治疗下都具有高度的稳健性。在该空间内的轨迹的动态分析产生了睡眠/唤醒转换的新特征:清醒是一个快速而直接的转变,可以通过弹道轨迹来建模,而入睡最好描述为随机和逐渐的状态变化。最后,我们证明 OB 振荡也允许我们跟踪其他警觉状态。非快速眼动 (NREM) 和快速眼动 (REM) 睡眠可以基于 beta (10-15 Hz) 功率进行高精度区分。更重要的是,我们表明可以使用 OB 伽马功率实时跟踪麻醉深度。事实上,在稳定状态下的恒定麻醉和动态恢复期间,伽马功率可以预测和预期对刺激的运动反应。总的来说,这种方法为大脑状态的多时间尺度特征描述开辟了道路,并提供了一个前所未有的警觉水平窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/ce7578dab517/pbio.2005458.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/fe1f3d5dc9ca/pbio.2005458.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/0945ed4fae7a/pbio.2005458.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/b5afd9db4d23/pbio.2005458.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/8ad01585c810/pbio.2005458.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/d0dd2f931354/pbio.2005458.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/f272caf95b60/pbio.2005458.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/e625a4c8bfcc/pbio.2005458.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/98981cfd3190/pbio.2005458.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/ce7578dab517/pbio.2005458.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/fe1f3d5dc9ca/pbio.2005458.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/0945ed4fae7a/pbio.2005458.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/b5afd9db4d23/pbio.2005458.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/8ad01585c810/pbio.2005458.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/d0dd2f931354/pbio.2005458.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/f272caf95b60/pbio.2005458.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/e625a4c8bfcc/pbio.2005458.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/98981cfd3190/pbio.2005458.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc36/6224033/ce7578dab517/pbio.2005458.g009.jpg

相似文献

[1]
Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth.

PLoS Biol. 2018-11-8

[2]
Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb.

Neuroscience. 2018-12-13

[3]
Design and validation of a computer-based sleep-scoring algorithm.

J Neurosci Methods. 2004-2-15

[4]
Scoring transitions to REM sleep in rats based on the EEG phenomena of pre-REM sleep: an improved analysis of sleep structure.

Sleep. 1994-2

[5]
Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.

J Vis Exp. 2017-8-2

[6]
Polygraphic Recording Procedure for Measuring Sleep in Mice.

J Vis Exp. 2016-1-25

[7]
Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

Neural Plast. 2016

[8]
Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.

Int J Neural Syst. 2016-6

[9]
Noninvasive dissection of mouse sleep using a piezoelectric motion sensor.

J Neurosci Methods. 2016-2-1

[10]
Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep.

Brain Res. 2001-2-9

引用本文的文献

[1]
Bridging the gap between lab and field sleep studies: a proof-of-concept for studying wild rats in semi-captive environments.

Sleep Adv. 2025-7-10

[2]
Global coordination of brain activity by the breathing cycle.

Nat Rev Neurosci. 2025-4-9

[3]
Odor representation and coding by the mitral/tufted cells in the olfactory bulb.

J Zhejiang Univ Sci B. 2024-10-15

[4]
Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain.

Curr Top Behav Neurosci. 2024-6-11

[5]
Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions.

PLoS Comput Biol. 2024-1

[6]
The pros and cons of using automated sleep scoring in sleep research.

Sleep. 2024-1-11

[7]
Pharmacological inhibition of S6K1 rescues synaptic deficits and attenuates seizures and depression in chronic epileptic rats.

CNS Neurosci Ther. 2024-3

[8]
State-dependent coupling of hippocampal oscillations.

Elife. 2023-7-18

[9]
Spotlight on Sleep Stage Classification Based on EEG.

Nat Sci Sleep. 2023-6-29

[10]
Decoding behavior from global cerebrovascular activity using neural networks.

Sci Rep. 2023-3-2

本文引用的文献

[1]
Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.

Nat Commun. 2016-11-8

[2]
Calcium imaging of sleep-wake related neuronal activity in the dorsal pons.

Nat Commun. 2016-2-25

[3]
4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.

Nat Neurosci. 2016-4

[4]
Waking State: Rapid Variations Modulate Neural and Behavioral Responses.

Neuron. 2015-9-23

[5]
Unsupervised online classifier in sleep scoring for sleep deprivation studies.

Sleep. 2015-5-1

[6]
Paying attention to smell: cholinergic signaling in the olfactory bulb.

Front Synaptic Neurosci. 2014-9-25

[7]
Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks.

Neuron. 2014-10-22

[8]
The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice.

Sleep. 2014-8-1

[9]
Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.

Cereb Cortex. 2015-5

[10]
Anesthetic regimes modulate the temporal dynamics of local field potential in the mouse olfactory bulb.

J Neurophysiol. 2013-11-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索