Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France.
Sci Rep. 2023 Mar 2;13(1):3541. doi: 10.1038/s41598-023-30661-5.
Functional Ultrasound (fUS) provides spatial and temporal frames of the vascular activity in the brain with high resolution and sensitivity in behaving animals. The large amount of resulting data is underused at present due to the lack of appropriate tools to visualize and interpret such signals. Here we show that neural networks can be trained to leverage the richness of information available in fUS datasets to reliably determine behavior, even from a single fUS 2D image after appropriate training. We illustrate the potential of this method with two examples: determining if a rat is moving or static and decoding the animal's sleep/wake state in a neutral environment. We further demonstrate that our method can be transferred to new recordings, possibly in other animals, without additional training, thereby paving the way for real-time decoding of brain activity based on fUS data. Finally, the learned weights of the network in the latent space were analyzed to extract the relative importance of input data to classify behavior, making this a powerful tool for neuroscientific research.
功能超声 (fUS) 以高分辨率和灵敏度为行为动物提供大脑血管活动的时空框架。由于缺乏适当的工具来可视化和解释这些信号,目前大量的相关数据未得到充分利用。在这里,我们展示了神经网络可以经过训练,利用 fUS 数据集提供的丰富信息来可靠地确定行为,甚至可以在经过适当训练后仅从单个 fUS 2D 图像中进行确定。我们通过两个示例说明了该方法的潜力:确定大鼠是运动还是静止,以及在中性环境中解码动物的睡眠/觉醒状态。我们进一步证明,我们的方法可以在没有额外训练的情况下转移到新的记录中,可能在其他动物中,从而为基于 fUS 数据的实时解码大脑活动铺平道路。最后,对网络在潜在空间中的学习权重进行了分析,以提取输入数据对分类行为的相对重要性,这使其成为神经科学研究的强大工具。