Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
Neuropharmacology. 2019 Aug;154:87-95. doi: 10.1016/j.neuropharm.2018.11.004. Epub 2018 Nov 5.
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
应激反应最初由汉斯·塞利 (Hans Selye) 描述为“身体对任何施加于它的需求的非特异性反应”,主要由下丘脑-垂体-肾上腺 (HPA) 轴介导,并由告知体内平衡受到威胁的各种感觉刺激激活。调节 HPA 轴的信号多样性部分是通过汇聚在 HPA 轴顶点的传入输入的复杂性来实现的:这个顶点由一群在下丘脑室旁核 (PVN) 中合成促肾上腺皮质释放激素 (CRH) 的神经分泌神经元组成。这些 PVN-CRH 神经元的传入突触输入源自许多脑区,并且 PVN-CRH 神经元对许多神经递质/神经肽有反应。考虑到这种复杂性,一个重要的问题是这些不同的传入信号如何独立地和/或协同地影响 PVN-CRH 神经元的兴奋性。虽然这些输入中的许多直接作用于突触后 PVN-CRH 神经元以进行信号的总和,但越来越多的证据表明,它们还在 PVN 中调节彼此的传递。这种传递方式称为异突触调制,它指出了一种机制,通过这种机制,特定调制输入(传递特定的感觉信号)的活动可以上调或下调其他传入突触(介导其他应激模式)的效能,具体取决于对异突触信号的受体表达和空间接近程度。在这里,我们回顾了 PVN 中的异突触调制的例子,并讨论了其在调节 PVN-CRH 神经元兴奋性和由此产生的 HPA 轴活动中的潜在作用。本文是特刊“下丘脑对体内平衡的控制”的一部分。