CREATIS Laboratory, INSA, Lyon, France.
Centre de Recherche sur La Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France.
Comput Biol Med. 2018 Dec 1;103:277-286. doi: 10.1016/j.compbiomed.2018.10.029. Epub 2018 Oct 31.
We propose a novel joint segmentation and characterization algorithm for the assessment of skin aging using 50 MHz high-frequency ultrasound images. The proposed segmentation method allows a fine determination of the envelope signal's statistics in the dermis as a function of depth. The sequence of statistical estimates obtained is then combined into a single aging score. The segmentation is based on tailored recursive non-linear filters. The epidermis and the dermis are jointly segmented with a non-parametric active contour combining a texture criterion, an epidermis indicator map and the geometric constraint of horizontal continuity. The algorithm is designed to apply to 2D and 3D images as well. We evaluated skin photo-aging on ultrasound images with an experimental study on a cohort of 76 women separated into 2 groups of different ages. Two aging scores are computed from the images: local dermal contrast and skin roughness. We show that these scores are much better at identifying the two groups (p-value ≈10) than the previously used MGVR indicator (p-value 0.046). Moreover, we find that a combined score more reliably evaluates skin photo-aging, with 84% success, than a scoring of the ultrasound images by 4 experts.
我们提出了一种新的联合分割和特征提取算法,用于使用 50MHz 高频超声图像评估皮肤老化。所提出的分割方法允许精细地确定真皮中包络信号的统计信息随深度的变化。然后,将获得的一系列统计估计值组合成一个单一的老化评分。分割基于定制的递归非线性滤波器。表皮和真皮通过联合分割的非参数主动轮廓线进行分割,该轮廓线结合了纹理标准、表皮指示图和水平连续性的几何约束。该算法设计为适用于 2D 和 3D 图像。我们通过对 76 名女性的队列进行的实验研究,在超声图像上评估皮肤光老化。从图像中计算出两个老化评分:局部真皮对比度和皮肤粗糙度。我们发现这些评分比以前使用的 MGVR 指标(p 值为 0.046)更能准确地区分这两个组(p 值约为 10)。此外,我们发现联合评分比 4 位专家对超声图像的评分更可靠地评估皮肤光老化,成功率为 84%。