Suppr超能文献

基于皮肤镜和高频超声成像的急性肾损伤分期自动评估——一项初步研究

Automatic Assessment of AK Stage Based on Dermatoscopic and HFUS Imaging-A Preliminary Study.

作者信息

Korecka Katarzyna, Slian Anna, Polańska Adriana, Dańczak-Pazdrowska Aleksandra, Żaba Ryszard, Czajkowska Joanna

机构信息

Department of Dermatology, Poznan University of Medical Sciences, 61-701 Poznań, Poland.

Department of Biomedical Informatics and Artificial Intelligence, Silesian University of Technology, 41-800 Zabrze, Poland.

出版信息

J Clin Med. 2024 Dec 10;13(24):7499. doi: 10.3390/jcm13247499.

Abstract

Actinic keratoses (AK) usually occur on sun-exposed areas in elderly patients with Fitzpatrick I-II skin types. Dermatoscopy and ultrasonography are two non-invasive tools helpful in examining clinically suspicious lesions. This study presents the usefulness of image-processing algorithms in AK staging based on dermatoscopic and ultrasonographic images. In 54 patients treated at the Department of Dermatology of Poznan University of Medical Sciences, clinical, dermatoscopic, and ultrasound examinations were performed. The clinico-dermoscopic AK classification was based on three-point Zalaudek scale. The ultrasound images were recorded with DermaScan C, Cortex Technology device, 20 MHz. The dataset consisted of 162 image pairs. The developed algorithm includes automated segmentation of ultrasound data utilizing a CFPNet-M model followed by handcrafted feature extraction. The dermatoscopic image analysis includes both handcrafted and convolutional neural network features, which, combined with ultrasound descriptors, are used in support vector machine-based classification. The network models were trained on public datasets. The influence of each modality on the final classification was evaluated. The most promising results were obtained for the dermatoscopic analysis with the use of neural network model (accuracy 81%) and its combination with ultrasound scans (accuracy 79%). The application of machine learning-based algorithms in dermatoscopic and ultrasound image analysis machine learning in the staging of AKs may be beneficial in clinical practice in terms of predicting the risk of progression. Further experiments are warranted, as incorporating more images is likely to improve classification accuracy of the system.

摘要

光化性角化病(AK)通常发生在皮肤类型为Fitzpatrick I-II型的老年患者暴露于阳光下的部位。皮肤镜检查和超声检查是有助于检查临床上可疑病变的两种非侵入性工具。本研究展示了基于皮肤镜和超声图像的图像处理算法在AK分期中的作用。在波兹南医科大学皮肤科接受治疗的54例患者中,进行了临床、皮肤镜和超声检查。临床皮肤镜下AK分类基于三分Zalaudek量表。使用Cortex Technology公司的DermaScan C设备以20 MHz记录超声图像。数据集由162对图像组成。所开发的算法包括利用CFPNet-M模型对超声数据进行自动分割,随后进行手工特征提取。皮肤镜图像分析包括手工特征和卷积神经网络特征,这些特征与超声描述符相结合,用于基于支持向量机的分类。网络模型在公共数据集上进行训练。评估了每种模式对最终分类的影响。使用神经网络模型进行皮肤镜分析(准确率81%)及其与超声扫描相结合(准确率79%)获得了最有前景的结果。在AK分期中,将基于机器学习的算法应用于皮肤镜和超声图像分析在临床实践中对于预测进展风险可能是有益的。由于纳入更多图像可能会提高系统的分类准确率,因此有必要进行进一步的实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca73/11677879/fb9a09de7d24/jcm-13-07499-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验