Suppr超能文献

聚电解质链迁移势垒的起源。

Origin of translocation barriers for polyelectrolyte chains.

机构信息

Department of Polymer Science and Engineering, Materials Research Science and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Chem Phys. 2009 Nov 21;131(19):194903. doi: 10.1063/1.3264632.

Abstract

For single-file translocations of a charged macromolecule through a narrow pore, the crucial step of arrival of an end at the pore suffers from free energy barriers, arising from changes in intrachain electrostatic interaction, distribution of ionic clouds and solvent molecules, and conformational entropy of the chain. All contributing factors to the barrier in the initial stage of translocation are evaluated by using the self-consistent field theory for the polyelectrolyte and the coupled Poisson-Boltzmann description for ions without radial symmetry. The barrier is found to be essentially entropic due to conformational changes. For moderate and high salt concentrations, the barriers for the polyelectrolyte chain are quantitatively equivalent to that of uncharged self-avoiding walks. Electrostatic effects are shown to increase the free energy barriers, but only slightly. The degree of ionization, electrostatic interaction strength, decreasing salt concentration, and the solvent quality all result in increases in the barrier.

摘要

对于带电荷的生物大分子通过狭窄孔道的单链转位,其到达孔道末端的关键步骤受到自由能势垒的限制,这些势垒源于链内静电相互作用、离子云及溶剂分子分布以及链构象熵的变化。利用聚电解质的自洽场理论和无径向对称的离子偶合泊松-玻尔兹曼描述,评估了转位初始阶段中对势垒有贡献的所有因素。由于构象变化,势垒主要是熵驱动的。对于中等和高盐浓度,聚电解质链的势垒与中性无规行走的势垒在数量上是等效的。静电作用被证明会增加自由能势垒,但作用很小。离子化程度、静电相互作用强度、盐浓度降低以及溶剂质量的增加都会导致势垒增大。

相似文献

1
Origin of translocation barriers for polyelectrolyte chains.
J Chem Phys. 2009 Nov 21;131(19):194903. doi: 10.1063/1.3264632.
2
Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations.
J Chem Phys. 2006 Apr 21;124(15):154902. doi: 10.1063/1.2178803.
5
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
J Chem Phys. 2004 Mar 15;120(11):5353-65. doi: 10.1063/1.1647048.
6
Polyelectrolyte-mediated bridging interactions: columnar macromolecular phases.
J Phys Condens Matter. 2010 Oct 20;22(41):414102. doi: 10.1088/0953-8984/22/41/414102. Epub 2010 Sep 30.
8
9
Release of lysozyme from the branched polyelectrolyte-lysozyme complexation.
J Phys Chem B. 2008 Apr 10;112(14):4393-400. doi: 10.1021/jp076348z. Epub 2008 Mar 15.
10
Theory of capture rate in polymer translocation.
J Chem Phys. 2010 May 21;132(19):195101. doi: 10.1063/1.3429882.

引用本文的文献

2
Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer.
Colloids Surf A Physicochem Eng Asp. 2022 Sep 5;648. doi: 10.1016/j.colsurfa.2022.129147. Epub 2022 May 4.
3
Anomalous packing and dynamics of a polymer chain confined in a static porous environment.
J Chem Phys. 2018 Nov 7;149(17):174902. doi: 10.1063/1.5043629.
5
Translocation frequency of double-stranded DNA through a solid-state nanopore.
Phys Rev E. 2016 Feb;93(2):022401. doi: 10.1103/PhysRevE.93.022401. Epub 2016 Feb 1.
6
Arm retraction and escape transition in semi-flexible star polymer under cylindrical confinement.
J Mol Model. 2015 Jul;21(7):186. doi: 10.1007/s00894-015-2735-9. Epub 2015 Jul 4.
7
Macromolecular mechanisms of protein translocation.
Protein Pept Lett. 2014 Mar;21(3):209-16. doi: 10.2174/09298665113209990079.
8
Applications of biological pores in nanomedicine, sensing, and nanoelectronics.
Curr Opin Biotechnol. 2010 Aug;21(4):439-76. doi: 10.1016/j.copbio.2010.05.002. Epub 2010 Jun 18.
9
Theory of capture rate in polymer translocation.
J Chem Phys. 2010 May 21;132(19):195101. doi: 10.1063/1.3429882.

本文引用的文献

1
Confinement free energy of flexible polyelectrolytes in spherical cavities.
J Chem Phys. 2008 May 14;128(18):184902. doi: 10.1063/1.2917354.
2
Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage.
Phys Rev Lett. 2008 Apr 18;100(15):158302. doi: 10.1103/PhysRevLett.100.158302. Epub 2008 Apr 17.
3
Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores.
J Chem Phys. 2007 Jul 7;127(1):015102. doi: 10.1063/1.2746246.
4
Polymer capture by electro-osmotic flow of oppositely charged nanopores.
J Chem Phys. 2007 Apr 28;126(16):164903. doi: 10.1063/1.2723088.
5
Mechanism of DNA transport through pores.
Annu Rev Biophys Biomol Struct. 2007;36:435-50. doi: 10.1146/annurev.biophys.36.040306.132622.
6
Threading synthetic polyelectrolytes through protein pores.
J Chem Phys. 2007 Feb 7;126(5):051101. doi: 10.1063/1.2435717.
7
Self-energy-limited ion transport in subnanometer channels.
Phys Rev Lett. 2006 Sep 22;97(12):128104. doi: 10.1103/PhysRevLett.97.128104. Epub 2006 Sep 21.
8
Confinement-driven translocation of a flexible polymer.
Phys Rev Lett. 2006 Jun 16;96(23):238104. doi: 10.1103/PhysRevLett.96.238104. Epub 2006 Jun 15.
10
Determination of RNA orientation during translocation through a biological nanopore.
Biophys J. 2006 Jan 1;90(1):190-9. doi: 10.1529/biophysj.105.068957. Epub 2005 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验