Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
J Chem Phys. 2018 Nov 7;149(17):174109. doi: 10.1063/1.5051591.
We study, analytically as well as numerically, the dynamics that arises from the interaction of a polar polarizable rigid rotor with single unipolar electromagnetic pulses of varying length, Δ, with respect to the rotational period of the rotor, . In the sudden, non-adiabatic limit, Δ ≪ , we derive analytic expressions for the rotor's wavefunctions, kinetic energies, and field-free evolution of orientation and alignment. We verify the analytic results by solving the corresponding time-dependent Schrödinger equation numerically and extend the temporal range of the interactions considered all the way to the adiabatic limit, Δ > , where general analytic solutions beyond the field-free case are no longer available. The effects of the orienting and aligning interactions as well as of their combination on the post-pulse populations of the rotational states are visualized as functions of the orienting and aligning kick strengths in terms of population quilts. Quantum carpets that encapsulate the evolution of the rotational wavepackets provide the space-time portraits of the resulting dynamics. The population quilts and quantum carpets reveal that purely orienting, purely aligning, or even-break combined interactions each exhibit sui generis dynamics. In the intermediate temporal regime, we find that the wavepackets as functions of the orienting and aligning kick strengths show resonances that correspond to diminished kinetic energies at particular values of the pulse duration.
我们研究了在极(可极化)刚性转子与单极电磁脉冲相互作用下产生的动力学,其中电磁脉冲的长度相对于转子的旋转周期是变化的,用 表示。在突然的非绝热极限下,, 我们推导出了转子波函数、动能以及无场取向和定向演化的解析表达式。我们通过数值求解相应的含时薛定谔方程来验证解析结果,并将相互作用的时间范围扩展到绝热极限,, 其中一般的解析解在无场情况下不再适用。取向和定向相互作用以及它们的组合对旋转态的后脉冲种群的影响,以种群被子的形式作为取向和定向踢力的函数来可视化。包含旋转波包演化的量子地毯提供了动力学的时空图像。种群被子和量子地毯表明,纯粹的取向、纯粹的定向或甚至打破的组合相互作用都表现出独特的动力学。在中间时间范围内,我们发现波包作为取向和定向踢力的函数表现出共振,这对应于在特定脉冲持续时间下动能的减小。