Suppr超能文献

基于表面肌电和语音共振峰的发音运动的神经力学建模。

Neuromechanical Modelling of Articulatory Movements from Surface Electromyography and Speech Formants.

机构信息

* Neuromorphic Speech Processing Lab, Center for Biomedical Technology, Universidad Politécnica de, Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain.

† Universidad Politécnica de Cartagena, Campus Universitario Muralla del Mar, Pza. Hospital 1, 30202 Cartagena, Spain.

出版信息

Int J Neural Syst. 2019 Mar;29(2):1850039. doi: 10.1142/S0129065718500399. Epub 2018 Aug 29.

Abstract

Speech articulation is produced by the movements of muscles in the larynx, pharynx, mouth and face. Therefore speech shows acoustic features as formants which are directly related with neuromotor actions of these muscles. The first two formants are strongly related with jaw and tongue muscular activity. Speech can be used as a simple and ubiquitous signal, easy to record and process, either locally or on e-Health platforms. This fact may open a wide set of applications in the study of functional grading and monitoring neurodegenerative diseases. A relevant question, in this sense, is how far speech correlates and neuromotor actions are related. This preliminary study is intended to find answers to this question by using surface electromyographic recordings on the masseter and the acoustic kinematics related with the first formant. It is shown in the study that relevant correlations can be found among the surface electromyographic activity (dynamic muscle behavior) and the positions and first derivatives of the first formant (kinematic variables related to vertical velocity and acceleration of the joint jaw and tongue biomechanical system). As an application example, it is shown that the probability density function associated to these kinematic variables is more sensitive than classical features as Vowel Space Area (VSA) or Formant Centralization Ratio (FCR) in characterizing neuromotor degeneration in Parkinson's Disease.

摘要

言语的产生是由喉、咽、口腔和面部肌肉的运动产生的。因此,言语表现出共振峰等声学特征,这些特征与这些肌肉的神经运动活动直接相关。前两个共振峰与下颌和舌部肌肉活动密切相关。言语可以作为一种简单而普遍的信号,易于在本地或电子健康平台上进行记录和处理。这一事实可能为研究功能分级和监测神经退行性疾病开辟了广泛的应用。在这方面,一个相关的问题是言语的相关性以及与神经运动活动的相关性。这项初步研究旨在通过记录咀嚼肌的表面肌电图和与第一共振峰相关的声学运动学,来回答这个问题。研究表明,表面肌电图活动(动态肌肉行为)与第一共振峰的位置和一阶导数(与颌舌生物力学系统的垂直速度和加速度相关的运动学变量)之间存在相关关系。作为一个应用实例,研究表明,与这些运动学变量相关的概率密度函数比经典特征(如元音空间面积[VSA]或共振峰集中比[FCR])更能敏感地描述帕金森病患者的神经运动退化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验