Suppr超能文献

基于粒子群优化算法的上肢肌肉力量康复评估系统的开发。

Development of an upper limb muscle strength rehabilitation assessment system using particle swarm optimisation.

作者信息

Zhou Chuangan, Wang Siqi, Wu Meiyi, Lai Wei, Yao Junyu, Gou Xingyue, Ye Hui, Yi Jun, Cao Dong

机构信息

School of medical information engineering, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.

College of Business, City University of Hong Kong, Hong Kong SAR, China.

出版信息

Front Bioeng Biotechnol. 2025 Jul 9;13:1619411. doi: 10.3389/fbioe.2025.1619411. eCollection 2025.

Abstract

PURPOSE

This study develops a particle swarm optimization (PSO)-based assessment system for evaluating upper extremity and shoulder joint muscle strength with potential application to stroke rehabilitation. This study validates the system on healthy adult volunteers using surface electromyography and joint motion data.

METHODS

The system comprises a multimodal data acquisition module and a computational analysis pipeline. sEMG signals were collected non-invasively from the anterior, medial, and posterior deltoid muscles using bipolar electrode arrays. These signals are subjected to noise reduction and feature extraction. Simultaneously, triaxial kinematic data of the glenohumeral joint were obtained via an MPU6050 inertial measurement unit, processed through quaternion-based orientation estimation. Machine learning models, including Backpropagation Neural Network (BPNN), Support Vector Machines (SVM), and particle swarm optimization algorithms (PSO-BPNN, PSO-SVR), were applied for regression analysis. Model performance was evaluated using R-squared ( ), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Bias Error (MBE).

RESULTS

The system successfully collected electromyographic and kinematic data. PSO-SVR achieved the best predictive performance ( = 0.8600, RMSE = 0.3122, MAE = 0.2453, MBE = 0.0293), outperforming SVR, PSO-BPNN, and BPNN.

CONCLUSION

The PSO-SVR model demonstrated the highest accuracy, which can better facilitate therapists in conducting muscle strength rehabilitation assessments.

SIGNIFICANCE

This system enhances quantitative assessment of muscle strength in stroke patients, providing a reliable tool for rehabilitation monitoring and personalized therapy adjustments.

摘要

目的

本研究开发了一种基于粒子群优化(PSO)的评估系统,用于评估上肢和肩关节肌肉力量,并潜在应用于中风康复。本研究使用表面肌电图和关节运动数据在健康成年志愿者身上验证了该系统。

方法

该系统包括一个多模态数据采集模块和一个计算分析管道。使用双极电极阵列从前、中、后三角肌非侵入性地收集表面肌电信号。这些信号经过降噪和特征提取。同时,通过MPU6050惯性测量单元获得肱盂关节的三轴运动学数据,并通过基于四元数的方向估计进行处理。应用包括反向传播神经网络(BPNN)、支持向量机(SVM)和粒子群优化算法(PSO - BPNN、PSO - SVR)的机器学习模型进行回归分析。使用决定系数( )、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差误差(MBE)评估模型性能。

结果

该系统成功收集了肌电和运动学数据。PSO - SVR实现了最佳预测性能( = 0.8600,RMSE = 0.3122,MAE = 0.2453,MBE = 0.0293),优于SVR、PSO - BPNN和BPNN。

结论

PSO - SVR模型表现出最高的准确性,能够更好地协助治疗师进行肌肉力量康复评估。

意义

该系统增强了对中风患者肌肉力量的定量评估,为康复监测和个性化治疗调整提供了可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684f/12283662/afad983a4180/fbioe-13-1619411-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验