Suppr超能文献

建立用于模拟颅神经嵴和躯干神经嵴细胞分化时程进展的鼠类培养体系。

Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation.

机构信息

Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.

Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.

出版信息

Dis Model Mech. 2018 Dec 12;11(12):dmm035097. doi: 10.1242/dmm.035097.

Abstract

The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper.

摘要

神经嵴(NC)是一种短暂存在的胚胎祖细胞群体,与多种先天性出生缺陷和儿科综合征有关。NC 相关疾病的广泛范围归因于 NC 产生的各种分化细胞类型。NC 发育模型为测试内在和外在因素在正常和病理条件下介导 NC 分化的相对贡献提供了一个强大的平台。尽管分化是一个随时间展开的动态过程,但目前还没有明确的时间顺序来描述 NC 分化为特定细胞命运的进展。在这项研究中,我们优化了培养条件,以扩增原代小鼠 NC 细胞,这些细胞可以产生外胚层和中胚层衍生物,即使经过多次传代也是如此。重要的是,我们划定了高度可重复的时间线,其中包括特定的中间阶段,用于 NC 分化的谱系特异性。此外,从同一胚胎中分离颅神经嵴和躯干神经嵴细胞,使我们能够在分化过程中直接比较这两个细胞群体。我们的研究结果定义了细胞形态和行为的特征变化,这些变化跟踪了 NC 细胞沿着神经元、神经胶质和软骨谱系分化的时间进展。这些基准构成了评估遗传或环境干扰如何促进或阻碍 NC 分化的时间基准。引入时间维度极大地提高了该平台筛选药物或化学物质的发育毒性或治疗潜力的能力。本文附有该论文第一作者的第一人称采访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a58c/6307900/59ab4cda3547/dmm-11-035097-g1.jpg

相似文献

3
A stable cranial neural crest cell line from mouse.
Stem Cells Dev. 2012 Nov 20;21(17):3069-80. doi: 10.1089/scd.2012.0155. Epub 2012 Oct 4.
4
Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells.
Int J Dev Biol. 2013;57(11-12):885-90. doi: 10.1387/ijdb.130206gw.
5
Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest.
Dev Biol. 2013 Dec 1;384(1):13-25. doi: 10.1016/j.ydbio.2013.09.030. Epub 2013 Oct 4.
7
[Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
Biol Aujourdhui. 2011;205(1):53-61. doi: 10.1051/jbio/2011008. Epub 2011 Apr 19.
9
Fibroblast growth factor 2 promotes the self-renewal of bipotent glial smooth muscle neural crest progenitors.
Stem Cells Dev. 2013 Apr 15;22(8):1241-51. doi: 10.1089/scd.2012.0585. Epub 2013 Jan 11.
10
In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells.
Methods. 2018 Jan 15;133:65-80. doi: 10.1016/j.ymeth.2017.09.012. Epub 2017 Oct 14.

引用本文的文献

2
A cross-platform approach to characterize and screen potential neurovascular unit toxicants.
Reprod Toxicol. 2020 Sep;96:300-315. doi: 10.1016/j.reprotox.2020.06.010. Epub 2020 Jun 24.
3
The development of the trunk neural crest in the turtle Trachemys scripta.
Dev Dyn. 2020 Jan;249(1):125-140. doi: 10.1002/dvdy.119. Epub 2019 Oct 9.
4
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis.
Cells. 2019 Sep 29;8(10):1173. doi: 10.3390/cells8101173.

本文引用的文献

1
Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview.
Genesis. 2018 Jun;56(6-7):e23105. doi: 10.1002/dvg.23105. Epub 2018 Apr 19.
2
The issue of the multipotency of the neural crest cells.
Dev Biol. 2018 Dec 1;444 Suppl 1:S47-S59. doi: 10.1016/j.ydbio.2018.03.024. Epub 2018 Mar 31.
3
Regulatory Logic Underlying Diversification of the Neural Crest.
Trends Genet. 2017 Oct;33(10):715-727. doi: 10.1016/j.tig.2017.07.015. Epub 2017 Aug 26.
4
Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells.
Stem Cell Reports. 2015 Oct 13;5(4):499-507. doi: 10.1016/j.stemcr.2015.08.017. Epub 2015 Oct 1.
5
Cumulative Chemical Exposures During Pregnancy and Early Development.
Curr Environ Health Rep. 2015 Dec;2(4):367-78. doi: 10.1007/s40572-015-0064-x.
6
Schwann Cells: Development and Role in Nerve Repair.
Cold Spring Harb Perspect Biol. 2015 May 8;7(7):a020487. doi: 10.1101/cshperspect.a020487.
7
Cranial nerve development requires co-ordinated Shh and canonical Wnt signaling.
PLoS One. 2015 Mar 23;10(3):e0120821. doi: 10.1371/journal.pone.0120821. eCollection 2015.
8
Premigratory and migratory neural crest cells are multipotent in vivo.
Cell Stem Cell. 2015 Mar 5;16(3):314-22. doi: 10.1016/j.stem.2015.02.017.
9
Establishing neural crest identity: a gene regulatory recipe.
Development. 2015 Jan 15;142(2):242-57. doi: 10.1242/dev.105445.
10
Guidelines for the use of cell lines in biomedical research.
Br J Cancer. 2014 Sep 9;111(6):1021-46. doi: 10.1038/bjc.2014.166. Epub 2014 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验