Suppr超能文献

能量在红移的玉米黄质-叶绿素 a 光捕获复合物中的转移动力学。

Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex.

机构信息

Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.

Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.

出版信息

Biochim Biophys Acta Bioenerg. 2019 Feb 1;1860(2):111-120. doi: 10.1016/j.bbabio.2018.11.006. Epub 2018 Nov 8.

Abstract

Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S and hot S states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.

摘要

光合真核生物的细胞中含有来自红藻的二次内共生体的质体,这些生物包括具有重要生态和经济重要性的物种。由于太阳能的利用依赖于高效的光捕获,因此,在一系列环境中,红藻系成功的关键因素之一是在光捕获机制的适应性中找到,该机制由光捕获复合物(LHC)家族的蛋白质形成。已经知道许多物种主要使用含有红移叶绿素 a(Chl a)形式的独特 LHC 类,其吸收波长超过 690nm。这似乎是对遮荫生境的一种适应。在这里,我们使用时间分辨荧光和超快瞬态吸收测量对真眼藻 Trachydiscus minutus 的红移光捕获天线中的激发能流进行了详细研究。该复合物中的主要类胡萝卜素是紫黄质,因此这种 LHC 被标记为红-紫黄质-Chl a 蛋白,rVCP。研究了复合物中的类胡萝卜素到 Chl a 的能量转移和 Chl a 分子层内的激发动力学,并将其与缺乏红-Chl a 的相关天线复合物 VCP 进行了比较。在红天线中鉴定出了两个光谱定义的类胡萝卜素池,它们有助于向 Chl a 转移能量,主要是通过 S 和热 S 态。此外,还记录了类胡萝卜素对 Chl a 三重态的猝灭。解析出了两个分开的红移 Chl a 池,其中一个可能是由激子耦合的 Chl a 分子形成的。讨论了这些观察结果的结构意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验