Suppr超能文献

利用数码相机图像追踪不同生态系统中植物的季节性节律。

Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery.

机构信息

School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA.

Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.

出版信息

New Phytol. 2019 Jun;222(4):1742-1750. doi: 10.1111/nph.15591. Epub 2018 Dec 14.

Abstract

Contents Summary I. Introduction II. Evolving modes of phenological study III. The phenocam approach IV. Applications of the phenocam method V. Looking forward Acknowledgements References SUMMARY: Global change is shifting the seasonality of vegetation in ecosystems around the globe. High-frequency digital camera imagery, and vegetation indices derived from that imagery, is facilitating better tracking of phenological responses to environmental variation. This method, commonly referred to as the 'phenocam' approach, is well suited to several specific applications, including: close-up observation of individual organisms; long-term canopy-level monitoring at individual sites; automated phenological monitoring in regional-to-continental scale observatory networks; and tracking responses to experimental treatments. Several camera networks are already well established, and some camera records are a more than a decade long. These data can be used to identify the environmental controls on phenology in different ecosystems, which will contribute to the development of improved prognostic phenology models.

摘要

内容摘要 I. 引言 II. 物候研究模式的演变 III. 物候相机方法 IV. 物候方法的应用 V. 展望 致谢 参考文献 摘要:全球变化正在改变全球生态系统中植被的季节性。高频数字相机图像及其衍生的植被指数,使人们能够更好地跟踪对环境变化的物候响应。这种方法通常被称为“物候相机”方法,非常适合几种特定的应用,包括:个体生物的近距离观察;单个地点的长期冠层水平监测;区域到大陆尺度观测网络中的自动物候监测;以及跟踪对实验处理的响应。一些相机网络已经建立得很好,有些相机记录的时间超过了十年。这些数据可用于确定不同生态系统中物候的环境控制因素,这将有助于开发改进的预测物候模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验