Zhao Ping, Zeng Yuan, Zheng Zhaoju, Xu Cong, Wu Jinchen, Mu Xuan, Zhou Zhaofu, Chen Junhua, Zhang Tao, Zhao Dan
Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Wenchang, China.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.
Front Plant Sci. 2025 Aug 18;16:1582910. doi: 10.3389/fpls.2025.1582910. eCollection 2025.
Satellite remote sensing data is essential for large-scale, timely, and repeatable monitoring of forest species diversity. While various methods have been applied to satellite-based diversity estimation at regional scales, selecting suitable sensor and monitoring period remains challenging, especially in tropical forests. This study aims to identify the optimal time window, spatial resolution, and metrics for species diversity estimation in the Jianfengling tropical forest in southern China. We constructed stepwise linear regression models for estimating Richness, Simpson, and Shannon-Wiener indices using species diversity and heterogeneity metrics of spectra and structure. For analyzing phenology influence, we utilized six Sentinel-2 images acquired bimonthly from January to November. For evaluating scale dependency, we resampled the GF2 image to five spatial resolutions ranging from 0.8 to 10 m. The results indicated that the suitable phenological periods for species diversity estimation were at the beginning and end of the growing season, especially September performing the best for all diversity indices. Among four types of heterogeneity metrics, spectral information consistently explained most variance in species diversity indices across all periods. The optimal spatial resolution for estimating Richness and Shannon-Wiener index was 4-5 m, which corresponded to the average tree crown size. The texture features made a significant contribution compared to other metrics. Our study highlights that species diversity monitoring is highly dependent on the spatiotemporal scales of remote sensing data. It may offer practical guidance for selecting appropriate data and methods for species diversity monitoring in tropical forests.
卫星遥感数据对于大规模、及时且可重复地监测森林物种多样性至关重要。虽然已采用各种方法在区域尺度上基于卫星进行多样性估计,但选择合适的传感器和监测期仍然具有挑战性,尤其是在热带森林中。本研究旨在确定中国南方尖峰岭热带森林物种多样性估计的最佳时间窗口、空间分辨率和指标。我们使用光谱和结构的物种多样性及异质性指标构建了逐步线性回归模型,以估计丰富度、辛普森指数和香农 - 维纳指数。为了分析物候影响,我们利用了从1月到11月每两个月获取一次的六幅哨兵 - 2图像。为了评估尺度依赖性,我们将高分二号图像重采样到0.8至10米的五种空间分辨率。结果表明,物种多样性估计的合适物候期是生长季的开始和结束时,特别是9月对所有多样性指数表现最佳。在四种异质性指标类型中,光谱信息在所有时期始终解释了物种多样性指数的大部分方差。估计丰富度和香农 - 维纳指数的最佳空间分辨率为4 - 5米,这与平均树冠大小相对应。与其他指标相比,纹理特征贡献显著。我们的研究强调,物种多样性监测高度依赖于遥感数据的时空尺度。它可为热带森林物种多样性监测选择合适的数据和方法提供实际指导。