Eisenmann Monika, Hansen Eskil
1Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
2Centre for Mathematical Sciences, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
Numer Math (Heidelb). 2018;140(4):913-938. doi: 10.1007/s00211-018-0985-z. Epub 2018 Jul 7.
Domain decomposition based time integrators allow the usage of parallel and distributed hardware, making them well-suited for the temporal discretization of parabolic systems. In this study, a rigours convergence analysis is given for such integrators without assuming any restrictive regularity on the solutions or the domains. The analysis is conducted by first deriving a new variational framework for the domain decomposition, which is applicable to the two standard degenerate examples. That is, the -Laplace and the porous medium type vector fields. Secondly, the decomposed vector fields are restricted to the underlying pivot space and the time integration of the parabolic problem can then be interpreted as an operators splitting applied to a dissipative evolution equation. The convergence results then follow by employing elements of the approximation theory for nonlinear semigroups.
基于区域分解的时间积分器允许使用并行和分布式硬件,这使得它们非常适合抛物型系统的时间离散化。在本研究中,对这类积分器进行了严格的收敛性分析,且不假设解或区域有任何严格的正则性。分析过程如下:首先为区域分解推导一个新的变分框架,该框架适用于两个标准的退化例子,即 -拉普拉斯型和多孔介质型向量场。其次,将分解后的向量场限制在基础枢轴空间,然后抛物型问题的时间积分可解释为应用于耗散演化方程的算子分裂。通过运用非线性半群逼近理论的元素得出收敛结果。