Suppr超能文献

用于优化治疗决策的稀疏一致性辅助学习

Sparse concordance-assisted learning for optimal treatment decision.

作者信息

Liang Shuhan, Lu Wenbin, Song Rui, Wang Lan

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Mach Learn Res. 2018 Apr;18.

Abstract

To find optimal decision rule, Fan et al. (2016) proposed an innovative concordance-assisted learning algorithm which is based on maximum rank correlation estimator. It makes better use of the available information through pairwise comparison. However the objective function is discontinuous and computationally hard to optimize. In this paper, we consider a convex surrogate loss function to solve this problem. In addition, our algorithm ensures sparsity of decision rule and renders easy interpretation. We derive the error bound of the estimated coefficients under ultra-high dimension. Simulation results of various settings and application to STAR*D both illustrate that the proposed method can still estimate optimal treatment regime successfully when the number of covariates is large.

摘要

为了找到最优决策规则,范等人(2016年)提出了一种基于最大秩相关估计器的创新一致性辅助学习算法。它通过成对比较更好地利用了可用信息。然而,目标函数是不连续的,并且在计算上难以优化。在本文中,我们考虑使用凸替代损失函数来解决这个问题。此外,我们的算法确保决策规则的稀疏性并易于解释。我们推导了超高维下估计系数的误差界。各种设置的模拟结果以及对STAR*D的应用均表明,当协变量数量很大时,所提出的方法仍然可以成功估计最优治疗方案。

相似文献

3
Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.利用稀疏性和秩亏来改进动态 MRI 重建。
Magn Reson Imaging. 2013 Jun;31(5):789-95. doi: 10.1016/j.mri.2012.10.026. Epub 2012 Dec 5.
4
Concordance-Assisted Learning for Estimating Optimal Individualized Treatment Regimes.用于估计最佳个体化治疗方案的一致性辅助学习
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1565-1582. doi: 10.1111/rssb.12216. Epub 2016 Oct 31.
6
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
8
Optimal Feature Selection in High-Dimensional Discriminant Analysis.高维判别分析中的最优特征选择
IEEE Trans Inf Theory. 2015 Feb;61(2):1063-1083. doi: 10.1109/TIT.2014.2381241.
9
Low-rank structure learning via nonconvex heuristic recovery.基于非凸启发式恢复的低秩结构学习。
IEEE Trans Neural Netw Learn Syst. 2013 Mar;24(3):383-96. doi: 10.1109/TNNLS.2012.2235082.
10
High-Dimensional Inference for Personalized Treatment Decision.个性化治疗决策的高维推理
Electron J Stat. 2018;12(1):2074-2089. doi: 10.1214/18-EJS1439. Epub 2018 Jun 21.

本文引用的文献

1
Concordance-Assisted Learning for Estimating Optimal Individualized Treatment Regimes.用于估计最佳个体化治疗方案的一致性辅助学习
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1565-1582. doi: 10.1111/rssb.12216. Epub 2016 Oct 31.
2
Variable Selection for Support Vector Machines in Moderately High Dimensions.适度高维下支持向量机的变量选择
J R Stat Soc Series B Stat Methodol. 2016 Jan;78(1):53-76. doi: 10.1111/rssb.12100. Epub 2015 Jan 5.
5
A robust method for estimating optimal treatment regimes.一种估计最优治疗方案的稳健方法。
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
6
Variable selection for optimal treatment decision.变量选择以实现最佳治疗决策。
Stat Methods Med Res. 2013 Oct;22(5):493-504. doi: 10.1177/0962280211428383. Epub 2011 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验