Suppr超能文献

新的纳米级增韧机制减轻了二元纳米晶合金的脆性。

New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys.

机构信息

Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87185, USA.

出版信息

Nanoscale. 2018 Dec 7;10(45):21231-21243. doi: 10.1039/c8nr06419a. Epub 2018 Nov 12.

Abstract

Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.

摘要

纳米晶金属在结构性能方面相对于传统合金有显著的提高。然而,它们的性能受到晶界不稳定性和延展性有限的限制。溶质偏析已被提出作为一种稳定机制,但是溶质原子会使晶界脆化,并进一步降低韧性。在本研究中,我们证实了溶质偏析在 Pt-Au 合金中的脆化效应。然而,更重要的是,我们表明,不均匀的化学偏析到晶界可以导致一种新的增韧机制,称为组成型裂纹止裂。当裂纹在被脆化元素耗尽的晶界区域停止时,纳米裂纹网络的形成促进了能量耗散。这种机制与三叉晶界止裂相结合,为优化热稳定性和能量耗散提供了途径。原位拉伸变形实验和分子动力学模拟的结合阐明了作为溶质含量函数的脆化和增韧过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验