Max-Planck-Institut fuer Eisenforschung GmbH, 40237, Düsseldorf, Germany.
Materials Center Leoben GmbH, Leoben, 8700, Austria.
Adv Mater. 2023 Jul;35(28):e2211796. doi: 10.1002/adma.202211796. Epub 2023 May 30.
The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries (GBs) by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing GB de-cohesion is not understood. Here, the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [001] tilt GB in α-Fe (4 at.% Al) is unveiled. Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex GB states. Ab initio simulations reveal that boron hinders zinc segregation and compensates for the zinc-induced loss in GB cohesion. The work sheds new light on how interstitial solutes intimately modify GBs, thereby opening pathways to use them as dopants for preventing disastrous material failure.
液态金属使金属合金脆化会导致灾难性的材料失效,严重影响其结构完整性。人们认为,液态金属的侵入和随后在固相中偏析会削弱晶界(GB),从而促进早期断裂。然而,增强结合能的间隙溶质的偏析与诱导 GB 解耦的脆化元素之间平衡的潜力尚不清楚。本文揭示了硼偏析如何减轻主要脆化剂锌在α-Fe(4at.%Al)中Σ5[001]倾转 GB 中有害影响的机制。锌形成纳米级偏析模式,导致 GB 处于结构和成分复杂的状态。从头算模拟表明,硼阻碍了锌的偏析,并补偿了锌诱导的 GB 结合能损失。这项工作为间隙溶质如何密切地改变晶界提供了新的认识,从而为将它们用作防止灾难性材料失效的掺杂剂开辟了途径。