Center for Applied Statistics, Renmin University of China, Beijing, China.
School of Statistics, Renmin University of China, Beijing, China.
Stat Med. 2019 Mar 30;38(7):1200-1212. doi: 10.1002/sim.8027. Epub 2018 Nov 12.
The analysis of cancer omics data is a "classic" problem; however, it still remains challenging. Advancing from early studies that are mostly focused on a single type of cancer, some recent studies have analyzed data on multiple "related" cancer types/subtypes, examined their commonality and difference, and led to insightful findings. In this article, we consider the analysis of multiple omics datasets, with each dataset on one type/subtype of "related" cancers. A Community Fusion (CoFu) approach is developed, which conducts marker selection and model building using a novel penalization technique, informatively accommodates the network community structure of omics measurements, and automatically identifies the commonality and difference of cancer omics markers. Simulation demonstrates its superiority over direct competitors. The analysis of TCGA lung cancer and melanoma data leads to interesting findings.
癌症组学数据分析是一个“经典”问题;然而,它仍然具有挑战性。从早期主要集中在单一类型癌症的研究进展,一些最近的研究分析了多种“相关”癌症类型/亚型的数据,检查了它们的共性和差异,并得出了有见地的发现。在本文中,我们考虑了多个组学数据集的分析,每个数据集都是一种“相关”癌症的一种类型/亚型。我们开发了一种社区融合(CoFu)方法,该方法使用一种新颖的惩罚技术进行标记选择和模型构建,信息性地适应了组学测量的网络社区结构,并自动识别癌症组学标记的共性和差异。模拟表明它优于直接竞争对手。对 TCGA 肺癌和黑色素瘤数据的分析得出了有趣的发现。