文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤多组学方法:癌症研究的新前沿。

Onco-Multi-OMICS Approach: A New Frontier in Cancer Research.

机构信息

Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.

Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.

出版信息

Biomed Res Int. 2018 Oct 3;2018:9836256. doi: 10.1155/2018/9836256. eCollection 2018.


DOI:10.1155/2018/9836256
PMID:30402498
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6192166/
Abstract

The acquisition of cancer hallmarks requires molecular alterations at multiple levels including genome, epigenome, transcriptome, proteome, and metabolome. In the past decade, numerous attempts have been made to untangle the molecular mechanisms of carcinogenesis involving single OMICS approaches such as scanning the genome for cancer-specific mutations and identifying altered epigenetic-landscapes within cancer cells or by exploring the differential expression of mRNA and protein through transcriptomics and proteomics techniques, respectively. While these single-level OMICS approaches have contributed towards the identification of cancer-specific mutations, epigenetic alterations, and molecular subtyping of tumors based on gene/protein-expression, they lack the resolving-power to establish the casual relationship between molecular signatures and the phenotypic manifestation of cancer hallmarks. In contrast, the multi-OMICS approaches involving the interrogation of the cancer cells/tissues in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic manifestations of cancer hallmarks such as metastasis and angiogenesis. Moreover, multi-OMICS approaches can be used to dissect the cellular response to chemo- or immunotherapy as well as discover molecular candidates with diagnostic/prognostic value. In this review, we focused on the applications of different multi-OMICS approaches in the field of cancer research and discussed how these approaches are shaping the field of personalized oncomedicine. We have highlighted pioneering studies from "The Cancer Genome Atlas (TCGA)" consortium encompassing integrated OMICS analysis of over 11,000 tumors from 33 most prevalent forms of cancer. Accumulation of huge cancer-specific multi-OMICS data in repositories like TCGA provides a unique opportunity for the systems biology approach to tackle the complexity of cancer cells through the unification of experimental data and computational/mathematical models. In future, systems biology based approach is likely to predict the phenotypic changes of cancer cells upon chemo-/immunotherapy treatment. This review is sought to encourage investigators to bring these different approaches together for interrogating cancer at molecular, cellular, and systems levels.

摘要

癌症特征的获得需要在多个层面上进行分子改变,包括基因组、表观基因组、转录组、蛋白质组和代谢组。在过去的十年中,人们已经尝试了许多方法来解开涉及单个 OMICS 方法的致癌分子机制,例如扫描基因组中的癌症特异性突变,并识别癌细胞中改变的表观遗传景观,或者通过分别探索转录组学和蛋白质组学技术中 mRNA 和蛋白质的差异表达来实现。虽然这些单一层级的 OMICS 方法有助于识别癌症特异性突变、表观遗传改变和肿瘤的分子亚型基于基因/蛋白质表达,但它们缺乏确定分子特征与癌症特征表型表现之间因果关系的分辨率。相比之下,涉及多维度检测癌细胞/组织的多 OMICS 方法有可能揭示不同癌症特征表型表现(如转移和血管生成)背后的复杂分子机制。此外,多 OMICS 方法可用于剖析细胞对化疗或免疫治疗的反应,并发现具有诊断/预后价值的分子候选物。在这篇综述中,我们重点介绍了不同多 OMICS 方法在癌症研究领域的应用,并讨论了这些方法如何塑造个性化肿瘤医学领域。我们强调了来自“癌症基因组图谱 (TCGA)”联盟的开创性研究,该联盟对来自 33 种最常见癌症的超过 11000 个肿瘤进行了综合 OMICS 分析。在 TCGA 等存储库中积累的大量癌症特异性多 OMICS 数据为系统生物学方法提供了一个独特的机会,通过将实验数据和计算/数学模型统一起来,解决癌症细胞的复杂性。在未来,基于系统生物学的方法可能会预测癌症细胞在化疗/免疫治疗治疗下的表型变化。本综述旨在鼓励研究人员将这些不同的方法结合起来,从分子、细胞和系统水平研究癌症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/bf0ec39dfc88/BMRI2018-9836256.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/cda69e2e8536/BMRI2018-9836256.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/d0b19e2f52f9/BMRI2018-9836256.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/a77507dd13fb/BMRI2018-9836256.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/bf0ec39dfc88/BMRI2018-9836256.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/cda69e2e8536/BMRI2018-9836256.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/d0b19e2f52f9/BMRI2018-9836256.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/a77507dd13fb/BMRI2018-9836256.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/6192166/bf0ec39dfc88/BMRI2018-9836256.004.jpg

相似文献

[1]
Onco-Multi-OMICS Approach: A New Frontier in Cancer Research.

Biomed Res Int. 2018-10-3

[2]
Omics-Based Investigations of Breast Cancer.

Molecules. 2023-6-14

[3]
Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy.

OMICS. 2017-1

[4]
Integration of Online Omics-Data Resources for Cancer Research.

Front Genet. 2020-10-23

[5]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[6]
Multi-omics based artificial intelligence for cancer research.

Adv Cancer Res. 2024

[7]
The Need for Multi-Omics Biomarker Signatures in Precision Medicine.

Int J Mol Sci. 2019-9-26

[8]
"Omics" in pharmaceutical research: overview, applications, challenges, and future perspectives.

Chin J Nat Med. 2015-1

[9]
Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes.

Mol Cells. 2021-7-31

[10]
Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications.

J Hematol Oncol. 2024-8-24

引用本文的文献

[1]
Advancements in non-invasive biomarkers for detection and monitoring of breast cancer recurrence.

Sci Prog. 2025

[2]
Integrative machine learning approach for forecasting lung cancer chemosensitivity: From algorithm to cell line validation.

Comput Struct Biotechnol J. 2025-7-24

[3]
A densely connected framework for cancer subtype classification.

BMC Bioinformatics. 2025-7-18

[4]
New insights of potential biomarkers in diabetic retinopathy: integrated multi-omic analyses.

Front Endocrinol (Lausanne). 2025-7-1

[5]
Target identification of natural products in cancer with chemical proteomics and artificial intelligence approaches.

Cancer Biol Med. 2025-7-9

[6]
New Frontiers of Biomarkers in Metastatic Colorectal Cancer: Potential and Critical Issues.

Int J Mol Sci. 2025-5-30

[7]
Innovative Approaches to Early Detection of Cancer-Transforming Screening for Breast, Lung, and Hard-to-Screen Cancers.

Cancers (Basel). 2025-6-2

[8]
New Insights into the Diagnosis and Treatment of Hepatocellular Carcinoma.

Biomedicines. 2025-5-20

[9]
Radiomics applications in the modern management of esophageal squamous cell carcinoma.

Med Oncol. 2025-5-27

[10]
Integrative analysis of DNA methylation, RNA sequencing, and genomic variants in the cancer genome atlas (TCGA) to predict endometrial cancer recurrence.

Front Genet. 2025-4-28

本文引用的文献

[1]
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.

Cell Rep. 2018-6-19

[2]
Integrated Molecular Characterization of Testicular Germ Cell Tumors.

Cell Rep. 2018-6-12

[3]
Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas.

Cancer Cell. 2018-4-2

[4]
Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies.

Pharmacol Ther. 2017-12-22

[5]
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas.

Cell. 2017-11-2

[6]
Integrated Analysis of Whole-Genome ChIP-Seq and RNA-Seq Data of Primary Head and Neck Tumor Samples Associates HPV Integration Sites with Open Chromatin Marks.

Cancer Res. 2017-12-1

[7]
APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism.

Nat Commun. 2017-9-6

[8]
Identification of novel dysregulated key genes in Breast cancer through high throughput ChIP-Seq data analysis.

Sci Rep. 2017-6-12

[9]
A DNA methylation map of human cancer at single base-pair resolution.

Oncogene. 2017-10-5

[10]
Multi-omics approaches to disease.

Genome Biol. 2017-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索