Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
Biomed Res Int. 2018 Oct 3;2018:9836256. doi: 10.1155/2018/9836256. eCollection 2018.
The acquisition of cancer hallmarks requires molecular alterations at multiple levels including genome, epigenome, transcriptome, proteome, and metabolome. In the past decade, numerous attempts have been made to untangle the molecular mechanisms of carcinogenesis involving single OMICS approaches such as scanning the genome for cancer-specific mutations and identifying altered epigenetic-landscapes within cancer cells or by exploring the differential expression of mRNA and protein through transcriptomics and proteomics techniques, respectively. While these single-level OMICS approaches have contributed towards the identification of cancer-specific mutations, epigenetic alterations, and molecular subtyping of tumors based on gene/protein-expression, they lack the resolving-power to establish the casual relationship between molecular signatures and the phenotypic manifestation of cancer hallmarks. In contrast, the multi-OMICS approaches involving the interrogation of the cancer cells/tissues in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic manifestations of cancer hallmarks such as metastasis and angiogenesis. Moreover, multi-OMICS approaches can be used to dissect the cellular response to chemo- or immunotherapy as well as discover molecular candidates with diagnostic/prognostic value. In this review, we focused on the applications of different multi-OMICS approaches in the field of cancer research and discussed how these approaches are shaping the field of personalized oncomedicine. We have highlighted pioneering studies from "The Cancer Genome Atlas (TCGA)" consortium encompassing integrated OMICS analysis of over 11,000 tumors from 33 most prevalent forms of cancer. Accumulation of huge cancer-specific multi-OMICS data in repositories like TCGA provides a unique opportunity for the systems biology approach to tackle the complexity of cancer cells through the unification of experimental data and computational/mathematical models. In future, systems biology based approach is likely to predict the phenotypic changes of cancer cells upon chemo-/immunotherapy treatment. This review is sought to encourage investigators to bring these different approaches together for interrogating cancer at molecular, cellular, and systems levels.
癌症特征的获得需要在多个层面上进行分子改变,包括基因组、表观基因组、转录组、蛋白质组和代谢组。在过去的十年中,人们已经尝试了许多方法来解开涉及单个 OMICS 方法的致癌分子机制,例如扫描基因组中的癌症特异性突变,并识别癌细胞中改变的表观遗传景观,或者通过分别探索转录组学和蛋白质组学技术中 mRNA 和蛋白质的差异表达来实现。虽然这些单一层级的 OMICS 方法有助于识别癌症特异性突变、表观遗传改变和肿瘤的分子亚型基于基因/蛋白质表达,但它们缺乏确定分子特征与癌症特征表型表现之间因果关系的分辨率。相比之下,涉及多维度检测癌细胞/组织的多 OMICS 方法有可能揭示不同癌症特征表型表现(如转移和血管生成)背后的复杂分子机制。此外,多 OMICS 方法可用于剖析细胞对化疗或免疫治疗的反应,并发现具有诊断/预后价值的分子候选物。在这篇综述中,我们重点介绍了不同多 OMICS 方法在癌症研究领域的应用,并讨论了这些方法如何塑造个性化肿瘤医学领域。我们强调了来自“癌症基因组图谱 (TCGA)”联盟的开创性研究,该联盟对来自 33 种最常见癌症的超过 11000 个肿瘤进行了综合 OMICS 分析。在 TCGA 等存储库中积累的大量癌症特异性多 OMICS 数据为系统生物学方法提供了一个独特的机会,通过将实验数据和计算/数学模型统一起来,解决癌症细胞的复杂性。在未来,基于系统生物学的方法可能会预测癌症细胞在化疗/免疫治疗治疗下的表型变化。本综述旨在鼓励研究人员将这些不同的方法结合起来,从分子、细胞和系统水平研究癌症。
Biomed Res Int. 2018-10-3
Molecules. 2023-6-14
Front Genet. 2020-10-23
Adv Cancer Res. 2024
Int J Mol Sci. 2019-9-26
Comput Struct Biotechnol J. 2025-7-24
BMC Bioinformatics. 2025-7-18
Front Endocrinol (Lausanne). 2025-7-1
Int J Mol Sci. 2025-5-30
Biomedicines. 2025-5-20
Cell Rep. 2018-6-12
Cancer Cell. 2018-4-2
Oncogene. 2017-10-5
Genome Biol. 2017-5-5