Zhang Wei, Chien Jeremy, Yong Jeongsik, Kuang Rui
1Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN USA.
2Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS USA.
NPJ Precis Oncol. 2017 Aug 8;1(1):25. doi: 10.1038/s41698-017-0029-7. eCollection 2017.
Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.
基于网络的分析在精准肿瘤学中发挥着越来越重要的作用。近期研究中越来越多的证据表明,通过突变或失调的通路或网络而非单个突变,能更好地理解癌症,并且可以从分子网络中的疾病模块推断重新定位药物的疗效。本文综述了基于网络的机器学习和图论算法,用于对个人基因组数据和生物医学知识库进行综合分析,以识别肿瘤特异性分子机制、候选靶点和用于个性化治疗的重新定位药物。综述重点关注这些方法的算法设计和数学公式,以促进基于网络的分析在精准肿瘤学实践中的应用和实施。我们回顾了在三种场景中应用的方法,以便在不同的分析流程中整合基因组数据和网络模型,并且我们研究了在药物-疾病-基因网络中重新定位药物的三类基于网络的方法。此外,我们对癌症基因组图谱中31个癌症基因组项目的突变进行了全面的子网/通路分析,并给出了一个关于卵巢癌的详细案例研究。最后,我们讨论了基于网络的精准肿瘤学中的有趣发现、潜在陷阱和未来方向。