Suppr超能文献

使用 PIP-FUCCI 技术在活细胞中精确描绘细胞周期相位转变。

Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI.

机构信息

a Department of Biochemistry and Biophysics , The University of North Carolina , Chapel Hill , NC , USA.

b Lineberger Comprehensive Cancer Center , The University of North Carolina , Chapel Hill , NC , USA.

出版信息

Cell Cycle. 2018;17(21-22):2496-2516. doi: 10.1080/15384101.2018.1547001.

Abstract

Cell cycle phase transitions are tightly orchestrated to ensure efficient cell cycle progression and genome stability. Interrogating these transitions is important for understanding both normal and pathological cell proliferation. By quantifying the dynamics of the popular FUCCI reporters relative to the transitions into and out of S phase, we found that their dynamics are substantially and variably offset from true S phase boundaries. To enhance detection of phase transitions, we generated a new reporter whose oscillations are directly coupled to DNA replication and combined it with the FUCCI APC/C reporter to create "PIP-FUCCI". The PIP degron fusion protein precisely marks the G1/S and S/G2 transitions; shows a rapid decrease in signal in response to large doses of DNA damage only during G1; and distinguishes cell type-specific and DNA damage source-dependent arrest phenotypes. We provide guidance to investigators in selecting appropriate fluorescent cell cycle reporters and new analysis strategies for delineating cell cycle transitions.

摘要

细胞周期时相转变被严格调控以确保细胞周期的有效进行和基因组的稳定性。研究这些转变对于理解正常和病理状态下的细胞增殖非常重要。通过定量分析 FUCCI 报告基因在进入和离开 S 期时的动力学变化,我们发现它们的动力学与真实的 S 期边界有很大的差异。为了增强对时相转变的检测,我们生成了一个新的报告基因,其振荡直接与 DNA 复制偶联,并将其与 FUCCI APC/C 报告基因结合,创建了“PIP-FUCCI”。PIP 降解结构域融合蛋白精确标记 G1/S 和 S/G2 转变;仅在 G1 期对大剂量的 DNA 损伤作出快速信号下降反应;并区分细胞类型特异性和 DNA 损伤源依赖性的阻滞表型。我们为研究人员提供了选择合适的荧光细胞周期报告基因和新的分析策略的指导,以描绘细胞周期时相转变。

相似文献

1
Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI.
Cell Cycle. 2018;17(21-22):2496-2516. doi: 10.1080/15384101.2018.1547001.
2
DNA damage response following X-irradiation in oral cancer cell lines HSC3 and HSC4.
Arch Oral Biol. 2018 Jun;90:1-8. doi: 10.1016/j.archoralbio.2018.02.016. Epub 2018 Mar 6.
3
Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle.
Mol Cell. 2017 Nov 2;68(3):626-640.e5. doi: 10.1016/j.molcel.2017.10.001. Epub 2017 Oct 26.
4
FUCCI-Red: a single-color cell cycle indicator for fluorescence lifetime imaging.
Cell Mol Life Sci. 2021 Apr;78(7):3467-3476. doi: 10.1007/s00018-020-03712-7. Epub 2021 Feb 8.
5
Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells.
Exp Cell Res. 2020 Jan 15;386(2):111720. doi: 10.1016/j.yexcr.2019.111720. Epub 2019 Nov 15.
8
Live-cell measurements of kinase activity in single cells using translocation reporters.
Nat Protoc. 2018 Jan;13(1):155-169. doi: 10.1038/nprot.2017.128. Epub 2017 Dec 21.
9
Lengthened G1 phase indicates differentiation status in human embryonic stem cells.
Stem Cells Dev. 2013 Jan 15;22(2):279-95. doi: 10.1089/scd.2012.0168. Epub 2012 Aug 29.
10
Visualization of the cancer cell cycle by tissue-clearing technology using the Fucci reporter system.
Cancer Sci. 2021 Sep;112(9):3796-3809. doi: 10.1111/cas.15034. Epub 2021 Jul 7.

引用本文的文献

2
Accurate Identification of Cell Cycle Stages in RPE1 Cells Using the ImmunoCellCycle-ID Method.
Bio Protoc. 2025 Aug 5;15(15):e5407. doi: 10.21769/BioProtoc.5407.
4
E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells.
Nat Commun. 2025 Jul 21;16(1):6677. doi: 10.1038/s41467-025-62061-w.
5
Oncogenic YAP sensitizes cells to CHK1 inhibition via CDK4/6 driven G1 acceleration.
EMBO Rep. 2025 Aug;26(16):4017-4039. doi: 10.1038/s44319-025-00514-5. Epub 2025 Jul 4.
6
Evaluating cell cycle- and autophagy-associated cellular accumulation of lipid-based nanoparticles.
Nat Commun. 2025 Jul 1;16(1):5964. doi: 10.1038/s41467-025-60962-4.
7
BAHCC1 binds H4K20me1 to facilitate the MCM complex loading and DNA replication.
Nat Commun. 2025 Jul 1;16(1):5502. doi: 10.1038/s41467-025-61284-1.
9
Comprehensive interrogation of synthetic lethality in the DNA damage response.
Nature. 2025 Apr;640(8060):1093-1102. doi: 10.1038/s41586-025-08815-4. Epub 2025 Apr 9.
10
Multimodal Nanoplasmonic and Fluorescence Imaging for Simultaneous Monitoring of Single-Cell Secretory and Intracellular Dynamics.
Adv Sci (Weinh). 2025 Apr;12(16):e2415808. doi: 10.1002/advs.202415808. Epub 2025 Mar 5.

本文引用的文献

1
Protein Dynamics in Complex DNA Lesions.
Mol Cell. 2018 Mar 15;69(6):1046-1061.e5. doi: 10.1016/j.molcel.2018.02.016.
3
Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle.
Mol Cell. 2017 Nov 2;68(3):626-640.e5. doi: 10.1016/j.molcel.2017.10.001. Epub 2017 Oct 26.
4
Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.
Cell Syst. 2017 Nov 22;5(5):445-459.e5. doi: 10.1016/j.cels.2017.09.015. Epub 2017 Oct 25.
6
Fluorescent indicators for simultaneous reporting of all four cell cycle phases.
Nat Methods. 2016 Dec;13(12):993-996. doi: 10.1038/nmeth.4045. Epub 2016 Oct 31.
7
Cell cycle proliferation decisions: the impact of single cell analyses.
FEBS J. 2017 Feb;284(3):362-375. doi: 10.1111/febs.13898. Epub 2016 Oct 5.
9
Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry.
Cell. 2016 Jun 30;166(1):167-80. doi: 10.1016/j.cell.2016.05.077.
10
Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression.
Cell Struct Funct. 2016 Jul 22;41(2):81-92. doi: 10.1247/csf.16007. Epub 2016 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验