Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA.
Department of Therapeutic Radiology, Yale University, New Haven, CT, USA.
Med Phys. 2018 Nov;45(11):e925-e952. doi: 10.1002/mp.13207.
BACKGROUND AND SIGNIFICANCE: The application of heavy ion beams in cancer therapy must account for the increasing relative biological effectiveness (RBE) with increasing penetration depth when determining dose prescriptions and organ at risk (OAR) constraints in treatment planning. Because RBE depends in a complex manner on factors such as the ion type, energy, cell and tissue radiosensitivity, physical dose, biological endpoint, and position within and outside treatment fields, biophysical models reflecting these dependencies are required for the personalization and optimization of treatment plans. AIM: To review and compare three mechanism-inspired models which predict the complexities of particle RBE for various ion types, energies, linear energy transfer (LET) values and tissue radiation sensitivities. METHODS: The review of models and mechanisms focuses on the Local Effect Model (LEM), the Microdosimetric-Kinetic (MK) model, and the Repair-Misrepair-Fixation (RMF) model in combination with the Monte Carlo Damage Simulation (MCDS). These models relate the induction of potentially lethal double strand breaks (DSBs) to the subsequent interactions and biological processing of DSB into more lethal forms of damage. A key element to explain the increased biological effectiveness of high LET ions compared to MV x rays is the characterization of the number and local complexity (clustering) of the initial DSB produced within a cell. For high LET ions, the spatial density of DSB induction along an ion's trajectory is much greater than along the path of a low LET electron, such as the secondary electrons produced by the megavoltage (MV) x rays used in conventional radiation therapy. The main aspects of the three models are introduced and the conceptual similarities and differences are critiqued and highlighted. Model predictions are compared in terms of the RBE for DSB induction and for reproductive cell survival. RESULTS AND CONCLUSIONS: Comparisons of the RBE for DSB induction and for cell survival are presented for proton ( H), helium ( He), and carbon ( C) ions for the therapeutically most relevant range of ion beam energies. The reviewed models embody mechanisms of action acting over the spatial scales underlying the biological processing of potentially lethal DSB into more lethal forms of damage. Differences among the number and types of input parameters, relevant biological targets, and the computational approaches among the LEM, MK and RMF models are summarized and critiqued. Potential experiments to test some of the seemingly contradictory aspects of the models are discussed.
背景与意义:在确定剂量处方和治疗计划中器官危险器官(OAR)限制时,重离子束在癌症治疗中的应用必须考虑到穿透深度增加时相对生物学效应(RBE)的增加。由于 RBE 复杂地依赖于离子类型、能量、细胞和组织放射敏感性、物理剂量、生物学终点以及治疗场内外的位置等因素,因此需要反映这些依赖性的生物物理模型来实现治疗计划的个性化和优化。
目的:综述并比较三种机制启发模型,这些模型预测了各种离子类型、能量、线性能量传递(LET)值和组织辐射敏感性的粒子 RBE 的复杂性。
方法:对模型和机制的综述侧重于局部效应模型(LEM)、微剂量动力学(MK)模型以及与蒙特卡罗损伤模拟(MCDS)相结合的修复-错误修复-固定(RMF)模型。这些模型将潜在致死性双链断裂(DSB)的诱导与 DSB 后续相互作用以及将 DSB 转化为更具致死性的损伤形式的生物处理联系起来。解释与 MV X 射线相比高 LET 离子具有更高生物学效应的一个关键因素是对细胞内产生的初始 DSB 的数量和局部复杂性(聚类)进行特征描述。对于高 LET 离子,沿着离子轨迹产生的 DSB 诱导的空间密度远远大于沿着低 LET 电子(例如,传统放射治疗中使用的兆伏(MV)X 射线产生的次级电子)的路径。介绍了三个模型的主要方面,并对其概念相似性和差异进行了批评和突出。根据 DSB 诱导和生殖细胞存活的 RBE 比较了模型预测。
结果与结论:为质子(H)、氦(He)和碳(C)离子在治疗上最相关的离子束能量范围内,展示了 DSB 诱导和细胞存活的 RBE 比较。综述的模型体现了作用于潜在致死性 DSB 转化为更具致死性的损伤形式的生物处理的空间尺度的作用机制。总结并批评了 LEM、MK 和 RMF 模型之间的输入参数、相关生物学靶标数量和类型以及计算方法的差异。讨论了一些似乎矛盾的模型方面的潜在实验测试。
Int J Radiat Oncol Biol Phys. 2015-7-20
Int J Radiat Oncol Biol Phys. 2011-11-16
Radiat Res. 2011-8-8
Phys Imaging Radiat Oncol. 2024-11-20
Int J Radiat Oncol Biol Phys. 2025-1-1