Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
Sci Rep. 2024 Oct 24;14(1):25181. doi: 10.1038/s41598-024-73619-x.
The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g., DNA damage, reproductive cell death). Physical quantities defined to characterize energy deposition have included dose, a measure of the mean energy imparted per unit mass of the target, and linear energy transfer (LET), a measure of the mean energy deposition per unit distance that charged particles traverse in a medium. The primary advantage of using the "dose and LET" physical system is its relative simplicity, especially for presenting and recording results. Inclusion of additional information such as the energy spectrum of charged particles renders this approach adequate to describe the biological effects of large dose levels from homogeneous sources. The primary disadvantage of this system is that it does not provide a unique description of the stochastic nature of radiation interactions. We and others have used dose-averaged LET (LET) as a correlative physical quantity to the relative biological effectiveness (RBE) of proton beams. This approach is based on established experimental findings that proton RBE increases with LET. However, this approach might not be applicable to intensity-modulated proton therapy or other applications in which the proton energy spectrum is highly heterogeneous. In the current study, we irradiated cancer cells with scanning proton beams with identical LET (3.4 keV/µm) but arising from two different proton energy/LET spectra (a narrow spectrum in group 1 and a widespread heterogeneous spectrum in group 2). Clonogenic survival after irradiation revealed significant differences in RBE at any cell surviving fraction: e.g., at a surviving fraction of 0.1, the RBE was 0.97 ± 0.03 in group 1 and 1.16 ± 0.04 in group 2 (p≤0.01), validating our hypothesis that LET alone may not adequately indicate proton RBE. Further analysis showed that microdosimetric spectrum (the probability density function of the stochastic physical quantity lineal energy y) was helpful for interpreting observed differences in biological effects. However, more accurate use of microdosimetric spectrum to quantify RBE requires a cell line-specific mechanistic model.
选择合适的物理量来描述电离辐射的生物学效应是随着科学认识的发展而不断演变的。辐射剂量学的基本假设是,电离辐射所沉积的能量引发了生物样本中所有的暴露后果(例如,DNA 损伤、生殖细胞死亡)。用于描述能量沉积的物理量包括剂量,即单位质量目标所接受的平均能量,以及线性能量转移(LET),即带电粒子在介质中穿过单位距离时的平均能量沉积。使用“剂量和 LET”物理系统的主要优点是其相对简单,特别是在呈现和记录结果方面。包含带电粒子能谱等额外信息,使得这种方法足以描述来自同质源的大剂量水平的生物学效应。该系统的主要缺点是它不能为辐射相互作用的随机性质提供唯一的描述。我们和其他人已经使用剂量平均 LET(LET)作为质子束相对生物效应(RBE)的相关物理量。这种方法基于已建立的实验结果,即质子 RBE 随 LET 增加而增加。然而,这种方法可能不适用于强度调制质子治疗或其他质子能谱高度不均匀的应用。在当前的研究中,我们用具有相同 LET(3.4 keV/µm)的扫描质子束照射癌细胞,但来自两种不同的质子能量/LET 谱(第 1 组中的窄谱和第 2 组中的广泛不均匀谱)。照射后克隆存活表明,在任何细胞存活分数下,RBE 都有显著差异:例如,在存活分数为 0.1 时,第 1 组的 RBE 为 0.97±0.03,第 2 组为 1.16±0.04(p≤0.01),验证了我们的假设,即仅 LET 可能不足以表明质子 RBE。进一步的分析表明,微剂量谱(随机物理量线性能量 y 的概率密度函数)有助于解释观察到的生物学效应差异。然而,更准确地使用微剂量谱来量化 RBE 需要一个特定于细胞系的机制模型。