Suppr超能文献

边缘结构模型和其他分析方法可在随机临床试验中提供多种治疗效果估计:Meta 流行病学分析。

Marginal structural models and other analyses allow multiple estimates of treatment effects in randomized clinical trials: Meta-epidemiological analysis.

机构信息

Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel 4031, Switzerland; Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University Medical Library, University of Basel, Basel 4051, Switzerland.

Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel 4031, Switzerland.

出版信息

J Clin Epidemiol. 2019 Mar;107:12-26. doi: 10.1016/j.jclinepi.2018.11.001. Epub 2018 Nov 10.

Abstract

OBJECTIVES

To determine how marginal structural models (MSMs), which are increasingly used to estimate causal effects, are used in randomized clinical trials (RCTs) and compare their results with those from intention-to-treat (ITT) or other analyses.

STUDY DESIGN AND SETTING

We searched PubMed, Scopus, citations of key references, and Clinicaltrials.gov. Eligible RCTs reported clinical effects based on MSMs and at least one other analysis.

RESULTS

We included 12 RCTs reporting 138 analyses for 24 clinical questions. In 19/24 (79%), MSM-based and other effect estimates were all in the same direction, 22/22 had overlapping 95% confidence intervals (CIs), and in 19/22 (86%), the MSM effect estimate lay within all 95% CIs of all other effects (in two cases no CIs were reported). For the same clinical question, the largest effect estimate from any analysis was 1.19-fold (median; interquartile range 1.13-1.34) larger than the smallest. All MSM and ITT effect estimates were in the same direction and had overlapping 95% CIs. In 71% (12/17), they also agreed on the presence of statistical significance. MSM-based effect estimates deviated more from the null than those based on ITT (P = 0.18). The effect estimates of both approaches differed 1.12-fold (median; interquartile range 1.02-1.22).

CONCLUSIONS

MSMs provided largely similar effect estimates as other available analyses. Nevertheless, some of the differences in effect estimates or statistical significance may become important in clinical decision-making, and the multiple estimates require utmost attention of possible selective reporting bias.

摘要

目的

确定越来越多地用于估计因果效应的边缘结构模型(MSMs)在随机临床试验(RCTs)中的使用情况,并将其结果与意向治疗(ITT)或其他分析进行比较。

研究设计和设置

我们在 PubMed、Scopus、关键参考文献的引文以及 Clinicaltrials.gov 中进行了检索。符合条件的 RCT 报告了基于 MSM 和至少一种其他分析的临床效果。

结果

我们纳入了 12 项 RCT,报告了 24 个临床问题的 138 项分析。在 24 个问题中的 19 个(79%)中,MSM 为基础的和其他效应估计值的方向一致,22/22 个具有重叠的 95%置信区间(CI),并且在 19/22 个(86%)中,MSM 效应估计值在所有其他效应的 95%CI 范围内(在两个案例中,没有报告 CI)。对于相同的临床问题,任何分析中最大的效应估计值比最小的大 1.19 倍(中位数;四分位距 1.13-1.34)。所有 MSM 和 ITT 效应估计值的方向一致,且具有重叠的 95%CI。在 71%(12/17)的情况下,它们也同意存在统计学意义。基于 MSM 的效应估计值比基于 ITT 的效应估计值更偏离零(P=0.18)。两种方法的效应估计值差异为 1.12 倍(中位数;四分位距 1.02-1.22)。

结论

MSMs 提供了与其他可用分析大致相似的效应估计值。然而,效应估计值或统计学意义的一些差异在临床决策中可能变得重要,并且需要对可能存在的选择性报告偏倚引起最大的关注。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验