Suppr超能文献

[数字健康应用的效益评估——挑战与机遇]

[Benefit assessment of digital health applications-challenges and opportunities].

作者信息

Hemkens Lars G

机构信息

Basel Institute for Clinical Epidemiology and Biostatistics (ceb), Department of Clinical Research, University Hospital Basel, Spitalstrasse 12, 4031, Basel, Schweiz.

Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.

出版信息

Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021 Oct;64(10):1269-1277. doi: 10.1007/s00103-021-03413-x. Epub 2021 Sep 15.

Abstract

Digital health applications promise to improve patient health and medical care. This analysis provides a brief overview of evidence-based benefit assessment and the challenges to the underlying evidence as prerequisites for optimal patient-oriented decision making. Classical concepts in study design, recent developments, and innovative approaches are described with the aim of highlighting future areas of development in innovative study designs and strategic evaluation concepts for digital health applications. A special focus is on pragmatic study designs.Evidence-based benefit assessment has fundamental requirements and criteria regardless of the type of treatments evaluated. Reliable evidence is essential. Fast, efficient, reliable, and practice-relevant evaluation of digital health applications is not achieved by turning to nonrandomized trials, but rather by better pragmatic randomized trials. They are feasible and combine the characteristics of digital health applications, classical methodological concepts, and new approaches to study conduct. Routinely collected data, low-contact study conduct (remote trials, virtual trials), and digital biomarkers promote useful randomized real-world evidence as solid evidence base for digital health applications. Continuous learning evaluation with randomized designs embedded in routine care is key to sustainable and efficient benefit assessment of digital health applications and may be crucial for strategic improvement of healthcare.

摘要

数字健康应用有望改善患者健康状况和医疗服务。本分析简要概述了基于证据的效益评估以及基础证据面临的挑战,这些是实现以患者为导向的最佳决策的先决条件。描述了研究设计中的经典概念、最新进展和创新方法,旨在突出数字健康应用创新研究设计和战略评估概念的未来发展领域。特别关注实用的研究设计。无论所评估的治疗类型如何,基于证据的效益评估都有基本要求和标准。可靠的证据至关重要。对数字健康应用进行快速、高效、可靠且与实践相关的评估,不能依靠非随机试验,而应通过更好的实用随机试验来实现。它们是可行的,并且结合了数字健康应用的特点、经典的方法学概念以及新的研究实施方法。常规收集的数据、低接触式研究实施(远程试验、虚拟试验)和数字生物标志物有助于产生有用的随机真实世界证据,作为数字健康应用的坚实证据基础。将随机设计嵌入常规护理中的持续学习评估是数字健康应用可持续和高效效益评估的关键,可能对医疗保健的战略改进至关重要。

相似文献

1
[Benefit assessment of digital health applications-challenges and opportunities].[数字健康应用的效益评估——挑战与机遇]
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021 Oct;64(10):1269-1277. doi: 10.1007/s00103-021-03413-x. Epub 2021 Sep 15.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

3
Clinical Trials Without Clinical Sites.无临床基地的临床试验。
JAMA Intern Med. 2021 May 1;181(5):680-684. doi: 10.1001/jamainternmed.2020.9223.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验