Suppr超能文献

基于粒子滤波的结构响应逐次测量的时空腐蚀监测与预测。

Particle Filter Based Monitoring and Prediction of Spatiotemporal Corrosion Using Successive Measurements of Structural Responses.

机构信息

Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea.

出版信息

Sensors (Basel). 2018 Nov 13;18(11):3909. doi: 10.3390/s18113909.

Abstract

Prediction of structural deterioration is a challenging task due to various uncertainties and temporal changes in the environmental conditions, measurement noises as well as errors of mathematical models used for predicting the deterioration progress. Monitoring of deterioration progress is also challenging even with successive measurements, especially when only indirect measurements such as structural responses are available. Recent developments of Bayesian filters and Bayesian inversion methods make it possible to address these challenges through probabilistic assimilation of successive measurement data and deterioration progress models. To this end, this paper proposes a new framework to monitor and predict the spatiotemporal progress of structural deterioration using successive, indirect and noisy measurements. The framework adopts particle filter for the purpose of real-time monitoring and prediction of corrosion states and probabilistic inference of uncertain and/or time-varying parameters in the corrosion progress model. In order to infer deterioration states from sparse indirect inspection data, for example structural responses at sensor locations, a Bayesian inversion method is integrated with the particle filter. The dimension of a continuous domain is reduced by the use of basis functions of truncated Karhunen-Loève expansion. The proposed framework is demonstrated and successfully tested by numerical experiments of reinforcement bar and steel plates subject to corrosion.

摘要

由于环境条件、测量噪声以及用于预测退化进度的数学模型的误差等各种不确定性和时间变化,预测结构退化是一项具有挑战性的任务。即使进行连续测量,退化进度的监测也具有挑战性,特别是当只有结构响应等间接测量可用时。贝叶斯滤波器和贝叶斯反演方法的最新发展使得通过连续测量数据和退化进度模型的概率同化来应对这些挑战成为可能。为此,本文提出了一种使用连续、间接和噪声测量来监测和预测结构退化时空进度的新框架。该框架采用粒子滤波器实时监测和预测腐蚀状态,并对腐蚀进度模型中的不确定和/或时变参数进行概率推断。为了从稀疏的间接检测数据(例如传感器位置处的结构响应)推断退化状态,与粒子滤波器集成了贝叶斯反演方法。通过使用截断的 Karhunen-Loève 展开的基函数来降低连续域的维度。通过对受腐蚀影响的钢筋和钢板进行数值实验,验证并成功测试了所提出的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaa/6263897/1736e5f43980/sensors-18-03909-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验