Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University.
Graduate School of Agriculture, Kyoto University.
Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(9):352-388. doi: 10.2183/pjab.99.023.
The present paper reviews recent activities on inverse analysis strategies in geotechnical engineering using Kalman filters, nonlinear Kalman filters, and Markov chain Monte Carlo (MCMC)/Hamiltonian Monte Carlo (HMC) methods. Nonlinear Kalman filters with finite element method (FEM) broaden the choices of unknowns to be determined for not only parameters but also initial and/or boundary conditions, and the use of the posterior probability of the state variables can be widely applied to, for example, the decision making for design changes. The relevance of the unknowns and the observed values and the selection of the best sensor locations are some of the considerations made while using the Kalman filter FEM. This paper demonstrates several real-world geotechnical applications of the nonlinear Kalman filter and the MCMC with FEM. Future studies should focus on the following areas: attaining excellent performance for long-term forecasts using short-term observation and developing a viable method for selecting equations that describe physical phenomena and constitutive models.
本文回顾了使用卡尔曼滤波器、非线性卡尔曼滤波器和马尔可夫链蒙特卡罗(MCMC)/哈密顿蒙特卡罗(HMC)方法在岩土工程反分析策略方面的最新进展。非线性卡尔曼滤波器与有限元法(FEM)相结合,不仅可以扩展待确定参数的选择,还可以扩展初始和/或边界条件的选择,并且可以广泛应用于状态变量的后验概率,例如,用于设计变更的决策。在使用卡尔曼滤波 FEM 时,需要考虑未知量、观测值和最佳传感器位置的相关性。本文展示了几个非线性卡尔曼滤波器和 MCMC 与 FEM 的岩土工程实际应用。未来的研究应集中在以下几个方面:利用短期观测获得长期预测的优异性能,并开发一种可行的方法来选择描述物理现象和本构模型的方程。