Suppr超能文献

卡尔曼滤波器和贝叶斯方法在岩土工程反分析中的应用发展。

Developments of inverse analysis by Kalman filters and Bayesian methods applied to geotechnical engineering.

机构信息

Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University.

Graduate School of Agriculture, Kyoto University.

出版信息

Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(9):352-388. doi: 10.2183/pjab.99.023.

Abstract

The present paper reviews recent activities on inverse analysis strategies in geotechnical engineering using Kalman filters, nonlinear Kalman filters, and Markov chain Monte Carlo (MCMC)/Hamiltonian Monte Carlo (HMC) methods. Nonlinear Kalman filters with finite element method (FEM) broaden the choices of unknowns to be determined for not only parameters but also initial and/or boundary conditions, and the use of the posterior probability of the state variables can be widely applied to, for example, the decision making for design changes. The relevance of the unknowns and the observed values and the selection of the best sensor locations are some of the considerations made while using the Kalman filter FEM. This paper demonstrates several real-world geotechnical applications of the nonlinear Kalman filter and the MCMC with FEM. Future studies should focus on the following areas: attaining excellent performance for long-term forecasts using short-term observation and developing a viable method for selecting equations that describe physical phenomena and constitutive models.

摘要

本文回顾了使用卡尔曼滤波器、非线性卡尔曼滤波器和马尔可夫链蒙特卡罗(MCMC)/哈密顿蒙特卡罗(HMC)方法在岩土工程反分析策略方面的最新进展。非线性卡尔曼滤波器与有限元法(FEM)相结合,不仅可以扩展待确定参数的选择,还可以扩展初始和/或边界条件的选择,并且可以广泛应用于状态变量的后验概率,例如,用于设计变更的决策。在使用卡尔曼滤波 FEM 时,需要考虑未知量、观测值和最佳传感器位置的相关性。本文展示了几个非线性卡尔曼滤波器和 MCMC 与 FEM 的岩土工程实际应用。未来的研究应集中在以下几个方面:利用短期观测获得长期预测的优异性能,并开发一种可行的方法来选择描述物理现象和本构模型的方程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1246/10749391/a4ce480465c7/pjab-99-352-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验