Laboratory for Developmental Neurobiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
Laboratory for Developmental Neurobiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12259-12264. doi: 10.1073/pnas.1811129115. Epub 2018 Nov 14.
Spinocerebellar ataxia type 29 (SCA29) is autosomal dominant congenital ataxia characterized by early-onset motor delay, hypotonia, and gait ataxia. Recently, heterozygous missense mutations in an intracellular Ca channel, inositol 1,4,5-trisphosphate (IP) receptor type 1 (IPR1), were identified as a cause of SCA29. However, the functional impacts of these mutations remain largely unknown. Here, we determined the molecular mechanisms by which pathological mutations affect IPR1 activity and Ca dynamics. Ca imaging using IPR-null HeLa cells generated by genome editing revealed that all SCA29 mutations identified within or near the IP-binding domain of IPR1 completely abolished channel activity. Among these mutations, R241K, T267M, T267R, R269G, R269W, S277I, K279E, A280D, and E497K impaired IP binding to IPR1, whereas the T579I and N587D mutations disrupted channel activity without affecting IP binding, suggesting that T579I and N587D compromise channel gating mechanisms. Carbonic anhydrase-related protein VIII (CA8) is an IPR1-regulating protein abundantly expressed in cerebellar Purkinje cells and is a causative gene of congenital ataxia. The SCA29 mutation V1538M within the CA8-binding site of IPR1 completely eliminated its interaction with CA8 and CA8-mediated IPR1 inhibition. Furthermore, pathological mutations in CA8 decreased CA8-mediated suppression of IPR1 by reducing protein stability and the interaction with IPR1. These results demonstrated the mechanisms by which pathological mutations cause IPR1 dysfunction, i.e., the disruption of IP binding, IP-mediated gating, and regulation via the IPR-modulatory protein. The resulting aberrant Ca homeostasis may contribute to the pathogenesis of cerebellar ataxia.
脊髓小脑共济失调 29 型(SCA29)是一种常染色体显性遗传的先天性共济失调,其特征为发病早、运动迟缓、肌张力低下和步态共济失调。最近,在细胞内钙通道肌醇 1,4,5-三磷酸(IP)受体 1(IPR1)的异质错义突变被确定为 SCA29 的病因。然而,这些突变的功能影响在很大程度上仍然未知。在这里,我们确定了病理性突变影响 IPR1 活性和钙动力学的分子机制。使用基因组编辑生成的 IPR 缺失的 HeLa 细胞进行钙成像显示,在 IPR1 的 IP 结合域内或附近鉴定的所有 SCA29 突变完全消除了通道活性。在这些突变中,R241K、T267M、T267R、R269G、R269W、S277I、K279E、A280D 和 E497K 削弱了 IP 与 IPR1 的结合,而 T579I 和 N587D 突变则破坏了通道活性而不影响 IP 结合,表明 T579I 和 N587D 损害了通道门控机制。碳酸酐酶相关蛋白 VIII(CA8)是一种 IPR1 调节蛋白,在小脑浦肯野细胞中大量表达,是先天性共济失调的致病基因。在 IPR1 的 CA8 结合位点内的 SCA29 突变 V1538M 完全消除了它与 CA8 的相互作用和 CA8 介导的 IPR1 抑制。此外,CA8 的病理性突变通过降低蛋白稳定性和与 IPR1 的相互作用,减少了 CA8 介导的对 IPR1 的抑制。这些结果表明了病理性突变导致 IPR1 功能障碍的机制,即 IP 结合、IP 介导的门控以及通过 IPR 调节蛋白的调节的破坏。由此产生的异常钙稳态可能导致小脑共济失调的发病机制。