Suppr超能文献

亚型特异性 IP 受体突变的病理生理后果。

Pathophysiological consequences of isoform-specific IP receptor mutations.

机构信息

KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.

KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.

出版信息

Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt B):1707-1717. doi: 10.1016/j.bbamcr.2018.06.004. Epub 2018 Jun 12.

Abstract

Ca signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca-signaling network is the inositol 1,4,5-trisphosphate (IP) receptor (IPR), a tetrameric channel that mediates Ca release from the endoplasmic reticulum (ER) in response to IP. IPR function is controlled by a myriad of factors, such as Ca, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IPR-mediated Ca signaling is the result of the existence of three main isoforms (IPR1, IPR2 and IPR3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IPR1 is highly expressed in neurons, IPR2 in cardiomyocytes and hepatocytes and IPR3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IPR isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IPR1 to dysfunctional exocrine tissues and autoimmune diseases for IPR2 and -3. Over the past years, several IPR mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IPR isoform and the subsequent molecular mechanisms underlying the etiology of the disease.

摘要

Ca 信号转导调控着多种细胞过程,因此受到严格的调控。细胞内 Ca 信号网络的主要组成部分之一是肌醇 1,4,5-三磷酸 (IP) 受体 (IPR),它是一种四聚体通道,可介导 IP 响应从内质网 (ER) 释放 Ca。IPR 的功能受到多种因素的控制,如 Ca、ATP、激酶和磷酸酶以及大量的辅助和调节蛋白。IPR 介导的 Ca 信号进一步复杂化是由于存在三种主要的同工型 (IPR1、IPR2 和 IPR3),它们表现出不同的功能特征和特性。尽管它们的表达模式丰富且重叠,但 IPR1 在神经元中高度表达,IPR2 在心肌细胞和肝细胞中表达,IPR3 在快速增殖的细胞中表达,如上皮细胞。因此,IPR 同工型的功能障碍和/或失调将产生不同的病理生理后果,从 IPR1 的神经紊乱到 IPR2 和 -3 的外分泌组织功能障碍和自身免疫疾病。在过去的几年中,在对患者来源样本的序列分析中出现了几种 IPR 突变。在这里,我们旨在为每个 IPR 同工型的临床最相关突变提供综合概述,并为疾病的病因提供潜在的分子机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验