Suppr超能文献

基于体积分析6个月大婴儿脑部MRI以识别自闭症生物标志物并进行早期诊断。

Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis.

作者信息

Wang Li, Li Gang, Shi Feng, Cao Xiaohuan, Lian Chunfeng, Nie Dong, Liu Mingxia, Zhang Han, Li Guannan, Wu Zhengwang, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:411-419. doi: 10.1007/978-3-030-00931-1_47. Epub 2018 Sep 13.

Abstract

Autism spectrum disorder (ASD) is mainly diagnosed by the observation of core behavioral symptoms. Due to the absence of early biomarkers to detect infants either or ASD during the first postnatal year of life, diagnosis must rely on behavioral observations long after birth. As a result, the window of opportunity for effective intervention may have passed when the disorder is detected. Therefore, it is clinically urgent to identify imaging-based biomarkers for early diagnosis and intervention. In this paper, , we proposed a volume-based analysis of infant subjects with risk of ASD at very early age, i.e., as early as at 6 months of age. A critical part of volume-based analysis is to accurately segment 6-month-old infant brain MRI scans into different regions of interest, e.g., white matter, gray matter, and cerebrospinal fluid. This is actually very challenging since the tissue contrast at 6-month-old is extremely low, caused by inherent ongoing myelination and maturation. To address this challenge, we propose an anatomy-guided, densely-connected network for accurate tissue segmentation. Based on tissue segmentations, we further perform brain parcellation and statistical analysis to identify those significantly different regions between autistic and normal subjects. Experimental results on National Database for Autism Research (NDAR) show the advantages of our proposed method in terms of both segmentation accuracy and diagnosis accuracy over state-of-the-art results.

摘要

自闭症谱系障碍(ASD)主要通过观察核心行为症状来诊断。由于在出生后的第一年里缺乏早期生物标志物来检测婴儿是否患有ASD,诊断必须依赖于出生后很长时间的行为观察。因此,当发现这种疾病时,有效干预的机会之窗可能已经过去。所以,临床上迫切需要识别基于影像学的生物标志物用于早期诊断和干预。在本文中,我们提出了一种基于体积的对极早期有ASD风险的婴儿受试者的分析方法,即早在6个月大时。基于体积的分析的一个关键部分是将6个月大婴儿的脑部MRI扫描准确分割成不同的感兴趣区域,例如白质、灰质和脑脊液。这实际上非常具有挑战性,因为6个月大时的组织对比度极低,这是由内在的持续髓鞘形成和成熟所导致的。为应对这一挑战,我们提出了一种基于解剖学引导的密集连接网络用于准确的组织分割。基于组织分割,我们进一步进行脑图谱绘制和统计分析,以识别自闭症受试者和正常受试者之间那些显著不同的区域。在自闭症研究国家数据库(NDAR)上的实验结果表明,我们提出的方法在分割精度和诊断精度方面都优于现有最先进的结果。

相似文献

1
Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:411-419. doi: 10.1007/978-3-030-00931-1_47. Epub 2018 Sep 13.
2
A PRELIMINARY VOLUMETRIC MRI STUDY OF AMYGDALA AND HIPPOCAMPAL SUBFIELDS IN AUTISM DURING INFANCY.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1052-1056. doi: 10.1109/ISBI.2019.8759439. Epub 2019 Jul 11.
3
Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.
Hum Brain Mapp. 2018 Jun;39(6):2609-2623. doi: 10.1002/hbm.24027. Epub 2018 Mar 8.
4
A Longitudinal MRI Study of Amygdala and Hippocampal Subfields for Infants with Risk of Autism.
Graph Learn Med Imaging (2019). 2019 Oct;11849:164-171. doi: 10.1007/978-3-030-35817-4_20. Epub 2019 Nov 14.
5
Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging.
Autism Res. 2021 Dec;14(12):2512-2523. doi: 10.1002/aur.2626. Epub 2021 Oct 13.
6
Early Diagnosis of Autism Disease by Multi-channel CNNs.
Mach Learn Med Imaging. 2018 Sep;11046:303-309. doi: 10.1007/978-3-030-00919-9_35. Epub 2018 Sep 15.
8
Informative Feature-Guided Siamese Network for Early Diagnosis of Autism.
Mach Learn Med Imaging. 2020 Oct;12436:674-682. doi: 10.1007/978-3-030-59861-7_68. Epub 2020 Sep 29.
10
Early brain development in infants at high risk for autism spectrum disorder.
Nature. 2017 Feb 15;542(7641):348-351. doi: 10.1038/nature21369.

引用本文的文献

1
Surface Expansion Regionalization of the Hippocampus in Early Brain Development.
bioRxiv. 2025 Feb 24:2025.02.22.639699. doi: 10.1101/2025.02.22.639699.
2
Revealing Fine-grained Genetically Informed Cortical Parcellation Maps of Neonates Based on Multi-view Spectral Clustering.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782296.
4
A foundation model for enhancing magnetic resonance images and downstream segmentation, registration and diagnostic tasks.
Nat Biomed Eng. 2025 Apr;9(4):521-538. doi: 10.1038/s41551-024-01283-7. Epub 2024 Dec 5.
5
Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers' Problem-Solving Skills.
Children (Basel). 2024 Feb 6;11(2):206. doi: 10.3390/children11020206.
6
Spherical Transformer on Cortical Surfaces.
Mach Learn Med Imaging. 2022 Sep;2022:406-415. doi: 10.1007/978-3-031-21014-3_42. Epub 2022 Dec 16.
7
Cortical growth from infancy to adolescence in preterm and term-born children.
Brain. 2024 Apr 4;147(4):1526-1538. doi: 10.1093/brain/awad348.
8
Self-supervised learning with application for infant cerebellum segmentation and analysis.
Nat Commun. 2023 Aug 5;14(1):4717. doi: 10.1038/s41467-023-40446-z.
9
Fine-grained functional parcellation maps of the infant cerebral cortex.
Elife. 2023 Aug 1;12:e75401. doi: 10.7554/eLife.75401.
10
Mapping Genetic Topography of Cortical Thickness and Surface Area in Neonatal Brains.
J Neurosci. 2023 Aug 23;43(34):6010-6020. doi: 10.1523/JNEUROSCI.1841-22.2023. Epub 2023 Jun 27.

本文引用的文献

1
Computational neuroanatomy of baby brains: A review.
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
4
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
A small number of abnormal brain connections predicts adult autism spectrum disorder.
Nat Commun. 2016 Apr 14;7:11254. doi: 10.1038/ncomms11254.
6
Future directions for research in autism spectrum disorders.
J Clin Child Adolesc Psychol. 2014;43(5):828-43. doi: 10.1080/15374416.2014.945214.
7
Changes in grey matter development in autism spectrum disorder.
Brain Struct Funct. 2013 Jul;218(4):929-42. doi: 10.1007/s00429-012-0439-9. Epub 2012 Jul 10.
8
Brain volume findings in 6-month-old infants at high familial risk for autism.
Am J Psychiatry. 2012 Jun;169(6):601-8. doi: 10.1176/appi.ajp.2012.11091425.
9
FreeSurfer.
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验