Suppr超能文献

基于解剖学的关节组织分割和拓扑纠正技术在 6 个月大婴儿自闭症风险脑 MRI 中的应用

Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.

机构信息

IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina.

Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina.

出版信息

Hum Brain Mapp. 2018 Jun;39(6):2609-2623. doi: 10.1002/hbm.24027. Epub 2018 Mar 8.

Abstract

Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness.

摘要

婴儿脑磁共振成像的组织分割对于描述早期脑发育和识别生物标志物至关重要。然而,由于内在的持续髓鞘化和成熟导致组织对比度低,因此具有挑战性。特别是在大约 6 个月大时,灰质和白质的体素强度都在相似的范围内,因此导致出生后第一年的图像对比度最低。以前的研究通常使用强度图像,并初步估计组织概率来训练一系列分类器进行组织分割。然而,在分割过程中,大脑解剖结构的重要先验知识在很大程度上被忽略了。因此,分割精度仍然有限,并且经常存在拓扑错误,这将显著降低后续分析的性能。尽管拓扑错误可以通过回顾性拓扑校正方法部分处理,但它们的结果可能仍然在解剖学上不正确。为了解决这些挑战,在本文中,我们提出了一种用于等信号婴儿 MRI 的解剖引导的联合组织分割和拓扑校正框架。特别是,我们采用了相对于外皮质表面的有符号距离图作为解剖先验知识,并将这种先验信息纳入到所提出的框架中,以指导在模糊区域进行分割。来自国家自闭症研究数据库的受试者的实验结果证明了对拓扑错误的有效性,并且对运动也具有一定程度的鲁棒性。与最先进的方法进行比较进一步证明了该方法在分割准确性和拓扑正确性方面的优势。

相似文献

5
4D multi-modality tissue segmentation of serial infant images.多模态 4D 组织分割的连续婴儿图像。
PLoS One. 2012;7(9):e44596. doi: 10.1371/journal.pone.0044596. Epub 2012 Sep 25.
6
Learning-Based Topological Correction for Infant Cortical Surfaces.基于学习的婴儿皮质表面拓扑校正
Med Image Comput Comput Assist Interv. 2016 Oct;9900:219-227. doi: 10.1007/978-3-319-46720-7_26. Epub 2016 Oct 2.

引用本文的文献

2
An end-to-end infant brain parcellation pipeline.一个端到端的婴儿脑部分割流程。
Intell Med. 2024 May;4(2):65-74. doi: 10.1016/j.imed.2023.05.002. Epub 2023 May 14.
5
A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation.一种用于婴儿脑皮质下分割的深度空间上下文引导框架。
Med Image Comput Comput Assist Interv. 2020 Oct;12267:646-656. doi: 10.1007/978-3-030-59728-3_63. Epub 2020 Sep 29.
6
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge.多站点婴儿脑分割算法:iSeg-2019 挑战赛。
IEEE Trans Med Imaging. 2021 May;40(5):1363-1376. doi: 10.1109/TMI.2021.3055428. Epub 2021 Apr 30.
8
Role of deep learning in infant brain MRI analysis.深度学习在婴儿脑 MRI 分析中的作用。
Magn Reson Imaging. 2019 Dec;64:171-189. doi: 10.1016/j.mri.2019.06.009. Epub 2019 Jun 20.

本文引用的文献

2
A review on automatic fetal and neonatal brain MRI segmentation.自动胎儿和新生儿脑 MRI 分割的综述。
Neuroimage. 2018 Apr 15;170:231-248. doi: 10.1016/j.neuroimage.2017.06.074. Epub 2017 Jun 28.
3
4
Learning-Based Topological Correction for Infant Cortical Surfaces.基于学习的婴儿皮质表面拓扑校正
Med Image Comput Comput Assist Interv. 2016 Oct;9900:219-227. doi: 10.1007/978-3-319-46720-7_26. Epub 2016 Oct 2.
6
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.基于卷积神经网络的磁共振脑图像自动分割。
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
8
Regional growth and atlasing of the developing human brain.发育中人类大脑的区域生长与图谱绘制
Neuroimage. 2016 Jan 15;125:456-478. doi: 10.1016/j.neuroimage.2015.10.047. Epub 2015 Oct 21.
9
Neonatal brain MRI segmentation: A review.新生儿脑 MRI 分割:综述。
Comput Biol Med. 2015 Sep;64:163-78. doi: 10.1016/j.compbiomed.2015.06.016. Epub 2015 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验