Suppr超能文献

从虫子到生物塑料:通过工程化大肠杆菌的全(+)-二氢蒈醛生物合成。

From Bugs to Bioplastics: Total (+)-Dihydrocarvide Biosynthesis by Engineered Escherichia coli.

机构信息

School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

出版信息

Chembiochem. 2019 Mar 15;20(6):785-792. doi: 10.1002/cbic.201800606. Epub 2019 Jan 21.

Abstract

The monoterpenoid lactone derivative (+)-dihydrocarvide ((+)-DHCD) can be polymerised to form shape-memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)-carvone. We have demonstrated a proof-of-principle in vivo approach for the complete biosynthesis of (+)-DHCD from glucose in Escherichia coli (6.6 mg L ). The pathway is based on the Mentha spicata route to (R)-carvone, with the addition of an 'ene'-reductase and Baeyer-Villiger cyclohexanone monooxygenase. Co-expression with a limonene synthesis pathway enzyme enables complete biocatalytic production within one microbial chassis. (+)-DHCD was successfully produced by screening multiple homologues of the pathway genes, combined with expression optimisation by selective promoter and/or ribosomal binding-site screening. This study demonstrates the potential application of synthetic biology approaches in the development of truly sustainable and renewable bioplastic monomers.

摘要

单萜内酯衍生物 (+)-二氢香芹酮 ((+)-DHCD) 可聚合形成形状记忆聚合物。与从(R)-香芹酮的化学合成相比,从简单、廉价的碳源合成生物学途径是一种有吸引力的替代途径。我们已经证明了在大肠杆菌中从葡萄糖完全生物合成 (+)-DHCD 的体内方法的原理验证(6.6mg/L)。该途径基于薄荷途径到(R)-香芹酮,外加一个 'ene'-还原酶和 Baeyer-Villiger 环己酮单加氧酶。与柠檬烯合成途径酶共表达可在一个微生物底盘内实现完全生物催化生产。通过筛选途径基因的多个同源物,并结合选择性启动子和/或核糖体结合位点筛选进行表达优化,成功生产出 (+)-DHCD。这项研究证明了合成生物学方法在开发真正可持续和可再生生物塑料单体方面的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6353/6850611/f592b72273a0/CBIC-20-785-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验