Banner Alec, Toogood Helen S, Scrutton Nigel S
E PSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre, SYNBIOCHEM Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
Microorganisms. 2021 May 18;9(5):1079. doi: 10.3390/microorganisms9051079.
The long road from emerging biotechnologies to commercial "green" biosynthetic routes for chemical production relies in part on efficient microbial use of sustainable and renewable waste biomass feedstocks. One solution is to apply the consolidated bioprocessing approach, whereby microorganisms convert lignocellulose waste into advanced fuels and other chemicals. As lignocellulose is a highly complex network of polymers, enzymatic degradation or "saccharification" requires a range of cellulolytic enzymes acting synergistically to release the abundant sugars contained within. Complications arise from the need for extracellular localisation of cellulolytic enzymes, whether they be free or cell-associated. This review highlights the current progress in the consolidated bioprocessing approach, whereby microbial chassis are engineered to grow on lignocellulose as sole carbon sources whilst generating commercially useful chemicals. Future perspectives in the emerging biofoundry approach with bacterial hosts are discussed, where solutions to existing bottlenecks could potentially be overcome though the application of high throughput and iterative Design-Build-Test-Learn methodologies. These rapid automated pathway building infrastructures could be adapted for addressing the challenges of increasing cellulolytic capabilities of microorganisms to commercially viable levels.
从新兴生物技术到用于化学生产的商业“绿色”生物合成路线的漫长道路,部分依赖于微生物对可持续和可再生废弃生物质原料的高效利用。一种解决方案是采用整合生物加工方法,即微生物将木质纤维素废物转化为高级燃料和其他化学品。由于木质纤维素是一种高度复杂的聚合物网络,酶促降解或“糖化”需要一系列纤维素分解酶协同作用,以释放其中所含的大量糖类。无论是游离的还是与细胞相关的纤维素分解酶,都需要在细胞外定位,这就产生了一些复杂问题。本综述重点介绍了整合生物加工方法的当前进展,即对微生物底盘进行工程改造,使其以木质纤维素作为唯一碳源生长,同时生产具有商业价值的化学品。还讨论了新兴的以细菌宿主为基础的生物铸造方法的未来前景,通过应用高通量和迭代的设计-构建-测试-学习方法,有可能克服现有瓶颈。这些快速的自动化途径构建基础设施可用于应对将微生物纤维素分解能力提高到商业可行水平的挑战。