Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, F-67000 Strasbourg, France.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Curr Opin Biotechnol. 2019 Apr;56:105-111. doi: 10.1016/j.copbio.2018.10.011. Epub 2018 Nov 13.
Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.
木质素大约在 4.5 亿年前与地球上维管植物的兴起同时进化。在木质素之前,曾有几代人利用祖先的苯丙烷代谢来制造生物聚合物,这有助于早期植物适应陆地环境。第一种真正的木质素是通过一些简单的苯丙烷醇的氧化偶联构建而成的,形成了一种坚固的聚合物,支持长距离的水分运输。这一发明直接促成了维管植物在地球植物群中的主导地位,并对我们今天所知道的丰富的陆地生态系统产生了深远的影响。在维管植物中,新的木质素特征不断出现,具有与宿主在复杂环境小生境中的适应性相关的扩展生物学功能。因此,了解木质素在不同植物中的化学和生化进化基础,为在具有经济意义的作物中设计理想的木质素特性提供了新的机会和工具。