Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany.
Angew Chem Int Ed Engl. 2018 Dec 21;57(52):16959-16967. doi: 10.1002/anie.201811713. Epub 2018 Dec 4.
The evolution of DNA microarray technology has led to sophisticated DNA chips that are being used as routine tools for fundamental and applied genome research such as genotyping and expression profiling. Owing to their capability for highly parallel, site-directed immobilization of complementary nucleic acids through canonical Watson-Crick base-pairing, however, DNA-modified surfaces can also be used for the assembly of complex surface architectures comprised of non-nucleic acid compounds, such as proteins or colloidal materials. Furthermore, implementation of functional DNA devices and structural DNA nanotechnology can unlock the full potential of DNA surfaces. Based on case studies from diagnostics, sensing, proteome research, cell adhesion, and cell signaling, we show how classical gene sensors have developed into modern integrated systems and platforms for various applications in life sciences and materials research.
DNA 微阵列技术的发展催生了复杂的 DNA 芯片,这些芯片正被用作基础和应用基因组研究(如基因分型和表达谱分析)的常规工具。然而,由于 DNA 修饰表面具有通过标准沃森-克里克碱基配对进行互补核酸高度平行、定点固定的能力,因此它们也可用于组装由非核酸化合物(如蛋白质或胶体材料)组成的复杂表面结构。此外,功能 DNA 器件和结构 DNA 纳米技术的实施可以挖掘 DNA 表面的全部潜力。通过来自诊断、传感、蛋白质组研究、细胞黏附和细胞信号转导的案例研究,我们展示了经典的基因传感器如何发展成为生命科学和材料研究中各种应用的现代集成系统和平台。