Suppr超能文献

用于纳米技术的互锁 DNA 拓扑结构。

Interlocked DNA topologies for nanotechnology.

机构信息

Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; Center of Advanced European Studies and Research (CASEAR), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.

Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.

出版信息

Curr Opin Biotechnol. 2017 Dec;48:159-167. doi: 10.1016/j.copbio.2017.04.002. Epub 2017 May 12.

Abstract

Interlocked molecular architectures are well known in supramolecular chemistry and are widely used for various applications like sensors, molecular machines and logic gates. The use of DNA for constructing these interlocked structures has increased significantly within the current decade. Because of Watson-Crick base pairing rules, DNA is an excellent material for the self-assembly of well-defined interlocked nanoarchitectures. These DNA nanostructures exhibit sufficient stability, good solubility in aqueous media, biocompatibility, and can be easily combined with other biomolecules in bio-hybrid nano-assemblies. Therefore, the study of novel DNA-based interlocked systems is of interest for nanotechnology, synthetic biology, supramolecular chemistry, biotechnology, and for sensing purposes. Here we summarize recent developments and applications of interlocked supramolecular architectures made of DNA. Examples illustrating that these systems can be precisely controlled by switching on and off the molecular motion of its mechanically trapped components are discussed. Introducing different triggers into such systems creates molecular assemblies capable of performing logic gate operations and/or catalytic activity control. Interlocked DNA-based nanostructures thus represent promising frameworks for building increasingly complex and dynamic nanomachines with highly controllable functionality.

摘要

分子互锁结构在超分子化学中是众所周知的,并且广泛应用于各种领域,如传感器、分子机器和逻辑门。在当前十年中,使用 DNA 构建这些互锁结构的应用显著增加。由于沃森-克里克碱基配对规则,DNA 是自组装具有明确互锁纳米结构的绝佳材料。这些 DNA 纳米结构表现出足够的稳定性、在水介质中的良好溶解性、生物相容性,并且可以很容易地与生物混合纳米组装中的其他生物分子结合。因此,研究新型基于 DNA 的互锁系统对于纳米技术、合成生物学、超分子化学、生物技术和传感目的具有重要意义。本文总结了 DNA 互锁超分子结构的最新发展和应用。讨论了通过打开和关闭其机械捕获组件的分子运动来精确控制这些系统的示例。将不同的触发因素引入此类系统中,可创建能够执行逻辑门操作和/或催化活性控制的分子组装体。因此,基于 DNA 的互锁纳米结构代表了构建具有高度可控功能的越来越复杂和动态纳米机器的有前途的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验