Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China.
Acc Chem Res. 2014 Jun 17;47(6):1853-60. doi: 10.1021/ar500073a. Epub 2014 May 20.
Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this structure can serve as the stem of one-dimensional nanowires, and a four-strand stem can provide a new basis for three-dimensional DNA structures such as pillars. By sacrificing some accuracy in assembly, we used these properties to prepare the first fast-responding pure DNA supramolecular hydrogel. This hydrogel does not swell and cannot encapsulate small molecules. These unique properties could lead to new developments in smart materials based on DNA assembly and support important applications in fields such as tissue engineering. We expect that DNA nanotechnology will continue to develop rapidly. At a fundamental level, further studies should lead to greater understanding of the energy transformation and material transportation mechanisms at the nanometer scale. In terms of applications, we expect that many of these elegant molecular devices will soon be used in vivo. These further studies could demonstrate the power of DNA nanotechnology in biology, material science, chemistry, and physics.
大多数生物过程都发生在纳米尺度,理解活生物体内部的能量转换和物质传输机制一直具有挑战性。为了更好地了解生命的奥秘,过去十年间,研究人员一直在研究人工分子马达和器件,因为这些系统可以模拟某些生物过程。基于 i-motif 结构的 DNA 纳米技术在这些研究中发挥了重要作用。在本综述中,我们总结了基于 i-motif 结构的功能性 DNA 纳米技术的最新进展。i-motif 是一种 DNA 四重体,由四个串联的胞嘧啶重复序列形成 C·CH(+)碱基对,其稳定需要略微酸性的条件。这种独特的性质产生了第一个由 pH 变化驱动的 DNA 分子马达。该马达可靠,研究表明其运行速度可达毫秒级,与天然蛋白马达的速度相当。通过精心设计,这些类型的马达的输出被组合起来,以驱动微米级的悬臂弯曲。使用已建立的 DNA 纳米结构组装和功能化方法,研究人员可以轻松地将马达集成到其他 DNA 组装结构和功能单元中,从而产生具有新功能的 DNA 分子器件,例如超亲水/超疏水性智能表面的切换、由 pH 变化触发的智能纳米孔、分子逻辑门和 DNA 纳米弹簧。最近,研究人员制造出了由光和电驱动的马达,这使得 DNA 马达能够集成在基于硅的纳米器件中。此外,一些基于 i-motif 结构的器件已被证明可用于研究活细胞内的过程。i-motif 结构的 pH 响应性也为 DNA 纳米结构的逐步组装提供了一种控制方法。此外,由于 i-motif 的稳定性,该结构可用作一维纳米线的茎,而四股茎可提供三维 DNA 结构(如立柱)的新基础。通过牺牲一些组装精度,我们利用这些特性制备了第一个快速响应的纯 DNA 超分子水凝胶。该水凝胶不会溶胀,也不能包裹小分子。这些独特的性质可能会导致基于 DNA 组装的智能材料的新发展,并为组织工程等领域提供支持。我们预计 DNA 纳米技术将继续快速发展。在基础层面上,进一步的研究应能深入了解纳米尺度的能量转换和物质传输机制。在应用方面,我们预计这些精巧的分子器件中的许多将很快在体内使用。这些进一步的研究可以展示 DNA 纳米技术在生物学、材料科学、化学和物理学中的强大功能。