Suppr超能文献

使用历史数据和半参数先验信息获取法进行IIA期临床试验的贝叶斯样本量确定

Bayesian sample size determination for phase IIA clinical trials using historical data and semi-parametric prior's elicitation.

作者信息

Berchialla Paola, Zohar Sarah, Baldi Ileana

机构信息

Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.

Centre de Recherche des Cordeliers, INSERM, Paris, France.

出版信息

Pharm Stat. 2019 Mar;18(2):198-211. doi: 10.1002/pst.1914. Epub 2018 Nov 15.

Abstract

The Simon's two-stage design is the most commonly applied among multi-stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre-trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two-stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B-splines. The motivating example is the planning of the phase IIA two-stage trial on anti-HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.

摘要

西蒙两阶段设计是IIA期临床试验多阶段设计中应用最广泛的。它结合了两个阶段的样本量,以尽量减少预期样本量或最大样本量。当对试验前关于预期或期望缓解率的信念的不确定性很高时,应考虑贝叶斯方法,因为它允许以更自然的方式处理感兴趣参数的整个分布。在这种情况下,一个关键问题是如何根据可用的汇总数据构建一个分布,以用作贝叶斯设计中的临床先验。在这项工作中,我们基于单阈值设计的预测版本探索了西蒙两阶段设计的贝叶斯对应方法。这种设计需要指定两个先验分布:用于计算后验概率的分析先验和用于获得先验预测分布的设计先验。虽然通常的方法是构建贝塔先验以进行共轭分析,但我们通过B样条的线性组合推导出了分析分布和设计分布。激励性示例是乳腺癌抗HER2 DNA疫苗IIA期两阶段试验的规划,其中根据专家意见和历史数据形成的初始信念显示出高度的不确定性。在样本量确定问题中,评估了不同先验的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验