An Junmo, Yadav Taruna, Ahmadi Mohammad Badri, Tarigoppula Venkata S Aditya, Francis Joseph Thachil
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:73-76. doi: 10.1109/EMBC.2018.8512274.
We are developing an autonomously updating brain machine interface (BMI) utilizing reinforcement learning principles. One aspect of this system is a neural critic that determines reward expectations from neural activity. This critic is then used to update a BMI decoder toward an improved performance from the user's perspective. Here we demonstrate the ability of a neural critic to classify trial reward value given activity from the primary motor cortex (M1), using neural features from single/multi units (SU/MU), and local field potentials (LFPs) with prediction accuracies up to 97% correct. A nonhuman primate subject conducted a cued center out reaching task, either manually, or observationally. The cue indicated the reward value of a trial. Features such as power spectral density (PSD) of the LFPs and spike-field coherence (SFC) between SU/MU and corresponding LFPs were calculated and used as inputs to several classifiers. We conclude that hybrid features of PSD and SFC show higher classification performance than PSD or SFC alone (accuracy was 92% for manual tasks, and 97% for observational). In the future, we will employ these hybrid features toward our autonomously updating BMI.
我们正在利用强化学习原理开发一种自主更新的脑机接口(BMI)。该系统的一个方面是一个神经评判器,它根据神经活动确定奖励预期。然后,这个评判器被用于朝着从用户角度提高性能的方向更新BMI解码器。在此,我们展示了一个神经评判器利用来自单个/多个神经元(SU/MU)的神经特征以及局部场电位(LFP),根据初级运动皮层(M1)的活动对试验奖励值进行分类的能力,预测准确率高达97%。一只非人类灵长类动物受试者执行了一个线索引导的中心外伸任务,任务方式可以是手动的,也可以是观察性的。线索表明了一次试验的奖励值。计算了诸如LFP的功率谱密度(PSD)以及SU/MU与相应LFP之间的尖峰 - 场相干性(SFC)等特征,并将其用作几个分类器的输入。我们得出结论,PSD和SFC的混合特征显示出比单独的PSD或SFC更高的分类性能(手动任务的准确率为92%,观察性任务的准确率为97%)。未来,我们将把这些混合特征应用于我们的自主更新BMI。