Suppr超能文献

使用实时脑电图源映射工具箱(REST)进行在线自动伪迹排除。

Online Automatic Artifact Rejection using the Real-time EEG Source-mapping Toolbox (REST).

作者信息

Pion-Tonachini Luca, Hsu Sheng-Hsiou, Chang Chi-Yuan, Jung Tzyy-Ping, Makeig Scott

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:106-109. doi: 10.1109/EMBC.2018.8512191.

Abstract

Non-brain contributions to electroencephalographic (EEG) signals, often referred to as artifacts, can hamper the analysis of scalp EEG recordings. This is especially true when artifacts have large amplitudes (e.g., movement artifacts), or occur continuously (like eye-movement artifacts). Offline automated pipelines can detect and reduce artifact in EEG data, but no good solution exists for online processing of EEG data in near real time. Here, we propose the combined use of online artifact subspace reconstruction (ASR) to remove large amplitude transients, and online recursive independent component analysis (ORICA) combined with an independent component (IC) classifier to compute, classify, and remove artifact ICs. We demonstrate the efficacy of the proposed pipeline using 2 EEG recordings containing series of (1) movement and muscle artifacts, and (2) cued blinks and saccades. This pipeline is freely available in the Real-time EEG Sourcemapping Toolbox (REST) for MATLAB (The Mathworks, Inc.).

摘要

对脑电图(EEG)信号的非脑源性贡献,通常被称为伪迹,会妨碍头皮脑电图记录的分析。当伪迹具有较大幅度(例如,运动伪迹)或连续出现(如眼动伪迹)时,情况尤其如此。离线自动化流程可以检测并减少脑电图数据中的伪迹,但对于近乎实时的脑电图数据在线处理,尚无良好的解决方案。在此,我们建议联合使用在线伪迹子空间重建(ASR)来去除大幅度瞬变,以及将在线递归独立成分分析(ORICA)与独立成分(IC)分类器相结合,以计算、分类并去除伪迹独立成分。我们使用包含以下两种情况的2份脑电图记录来证明所提出流程的有效性:(1)运动和肌肉伪迹系列,以及(2)提示性眨眼和扫视。该流程可在用于MATLAB(The Mathworks, Inc.)的实时脑电图源映射工具箱(REST)中免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验