Suppr超能文献

用于基于稳态视觉诱发电位的脑机接口的频谱和相位自适应共空间模式算法

Spectrum and Phase Adaptive CCA for SSVEP-based Brain Computer Interface.

作者信息

Zhang Zhuo, Wang Chuanchu, Ang Kai Keng, Wai Aung Aung Phyo, Nanyang Cuntai Guan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:311-314. doi: 10.1109/EMBC.2018.8512267.

Abstract

Among various brain activity patterns, Steady State Visual Evoked Potential (SSVEP) based Brain Computer Inter-face (BCI) requires the least training time while carrying the fastest information transfer rate, making it highly suitable for deploying efficient self-paced BCI systems. In this study, we propose a Spectrum and Phase Adaptive CCA (SPACCA) for subject-and device-specific SSVEP-based BCI. Cross subject heterogeneity of spectrum distribution is taken into consideration to improve the prediction accuracy. We design a library of phase shifting reference signals to accommodate subjective and device-related response time lag. With the flexible reference signal generating approach, the system can be optimized for any specific flickering source, include LED, computer screen and mobile devices. We evaluated the performance of SPACCA using three sets of data that use LED, computer screen and mobile device (tablet) as stimuli sources respectively. The first two data sets are publicly available whereas the third data set is collected in our BCI lab. Across different data sets, SPACCA consistently performs better than the baseline, i.e. standard CCA approach. Statistical test to compare the overall results across three data sets yield a p-value of 1.66e-6, implying the improvement is significant.

摘要

在各种脑活动模式中,基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)所需的训练时间最少,同时信息传输速率最快,这使其非常适合部署高效的自定节奏BCI系统。在本研究中,我们提出了一种针对特定受试者和设备的基于SSVEP的BCI的频谱和相位自适应共空间模式分析(SPACCA)方法。考虑到频谱分布的跨受试者异质性,以提高预测准确性。我们设计了一个相移参考信号库,以适应个体差异和与设备相关的响应时间延迟。通过灵活的参考信号生成方法,该系统可以针对任何特定的闪烁源进行优化,包括发光二极管(LED)、电脑屏幕和移动设备。我们使用分别以LED、电脑屏幕和移动设备(平板电脑)作为刺激源的三组数据评估了SPACCA的性能。前两组数据集是公开可用的,而第三组数据集是在我们的BCI实验室收集的。在不同的数据集中,SPACCA始终比基线(即标准共空间模式分析方法)表现更好。比较三个数据集总体结果的统计检验得出的p值为1.66e - 6,这意味着改进是显著的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验