Suppr超能文献

基于自适应阈值的基于稳态视觉诱发电位的脑机接口的基于模板的受试者间和受试者内多变量同步指数

Inter- and Intra-subject Template-Based Multivariate Synchronization Index Using an Adaptive Threshold for SSVEP-Based BCIs.

作者信息

Wang Haoran, Sun Yaoru, Li Yunxia, Chen Shiyi, Zhou Wei

机构信息

Department of Computer Science and Technolgy, College of Electronic and Information Engineering, Tongji University, Shanghai, China.

Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Neurosci. 2020 Sep 9;14:717. doi: 10.3389/fnins.2020.00717. eCollection 2020.

Abstract

The steady-state visually evoked potential (SSVEP) has been widely used in brain-computer interfaces (BCIs). Many studies have proved that the Multivariate synchronization index (MSI) is an efficient method for recognizing the frequency components in SSVEP-based BCIs. Despite its success, the recognition accuracy has not been satisfactory because the simplified pre-constructed sine-cosine waves lack abundant features from the real electroencephalogram (EEG) data. Recent advances in addressing this issue have achieved a significant improvement in recognition accuracy by using individual calibration data. In this study, a new extension based on inter- and intra-subject template signals is introduced to improve the performance of the standard MSI method. Through template transfer, inter-subject similarity and variability are employed to enhance the robustness of SSVEP recognition. Additionally, most existed methods for SSVEP recognition utilize a fixed time window (TW) to perform frequency domain analysis, which limits the information transfer rate (ITR) of BCIs. For addressing this problem, a novel adaptive threshold strategy is integrated into the extension of MSI, which uses a dynamic window to extract the temporal features of SSVEPs and recognizes the stimulus frequency based on a pre-set threshold. The pre-set threshold contributes to obtaining an appropriate and shorter signal length for frequency recognition and filtering ignored-invalid trials. The proposed method is evaluated on a 12-class SSVEP dataset recorded from 10 subjects, and the result shows that this achieves higher recognition accuracy and information transfer rate when compared with the CCA, MSI, Multi-set CCA, and Individual Template-based CCA. This paper demonstrates that the proposed method is a promising approach for developing high-speed BCIs.

摘要

稳态视觉诱发电位(SSVEP)已在脑机接口(BCI)中得到广泛应用。许多研究证明,多变量同步指数(MSI)是识别基于SSVEP的脑机接口中频率成分的有效方法。尽管取得了成功,但由于简化的预构建正弦余弦波缺乏来自真实脑电图(EEG)数据的丰富特征,识别准确率仍不尽人意。最近在解决这一问题方面的进展通过使用个体校准数据在识别准确率上取得了显著提高。在本研究中,引入了一种基于受试者间和受试者内模板信号的新扩展方法,以提高标准MSI方法的性能。通过模板转移,利用受试者间的相似性和变异性来增强SSVEP识别的鲁棒性。此外,大多数现有的SSVEP识别方法利用固定时间窗口(TW)进行频域分析,这限制了脑机接口的信息传输速率(ITR)。为了解决这个问题,一种新颖的自适应阈值策略被集成到MSI的扩展中,该策略使用动态窗口提取SSVEP的时间特征,并基于预设阈值识别刺激频率。预设阈值有助于获得合适且更短的信号长度用于频率识别,并过滤被忽略的无效试验。该方法在从10名受试者记录的12类SSVEP数据集上进行了评估,结果表明,与CCA、MSI、多集CCA和基于个体模板的CCA相比,该方法具有更高的识别准确率和信息传输速率。本文证明了所提出的方法是开发高速脑机接口的一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验