Suppr超能文献

利用床传感器数据和神经网络进行睡眠姿势分类

Sleep Posture Classification Using Bed Sensor Data and Neural Networks.

作者信息

Enayati Moein, Skubic Marjorie, Keller James M, Popescu Mihail, Farahani Nasibeh Zanjirani

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:461-465. doi: 10.1109/EMBC.2018.8512436.

Abstract

Sleep posture has been shown to be important in monitoring health conditions such as congestive heart failure (CHF), sleep apnea, pressure ulcers, and even blood pressure abnormalities. In this paper, we investigate the use of four hydraulic bed transducers placed underneath the mattress to classify different sleep postures. For classification, we employed a simple neural network. Different combinations of parameters were studied to determine the best configuration. Data were collected on four major postures from 58 subjects. We report the results of classification for different combinations of these four postures. Both 10-Fold and Leave-One-Subject-Out (LOSO) Cross-validations (CV) were used to evaluate the accuracy of our predictions. Our results show that there are multiple configuration settings that make classification accuracy as high as 100% using k-Fold CV for all postures. Maximum classification accuracy after applying LOSO is 93% for a two-class classification of separating Left vs. Right lateral positions. The second-best classification accuracy with LOSO is 92% for the classification of lateral versus non-lateral.

摘要

睡眠姿势已被证明在监测健康状况方面很重要,如充血性心力衰竭(CHF)、睡眠呼吸暂停、压疮,甚至血压异常。在本文中,我们研究了使用放置在床垫下方的四个液压床传感器来对不同睡眠姿势进行分类。为了进行分类,我们采用了一个简单的神经网络。研究了不同的参数组合以确定最佳配置。从58名受试者身上收集了四种主要姿势的数据。我们报告了这四种姿势不同组合的分类结果。使用10折交叉验证和留一法交叉验证(LOSO)来评估我们预测的准确性。我们的结果表明,存在多种配置设置,使用k折交叉验证对所有姿势进行分类时,分类准确率高达100%。应用留一法后,区分左侧与右侧卧位的两类分类的最大分类准确率为93%。留一法的第二高分类准确率是区分侧卧位与非侧卧位时的92%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验