Xifra-Porxas Alba, Kostoglou Kyriaki, Lariviere Sara, Niso Guiomar, Kassinopoulos Michalis, Boudrias Marie-Helene, Mitsis Georgios D
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1024-1021. doi: 10.1109/EMBC.2018.8512475.
Neural populations coordinate at fast subsecond time-scales during rest and task execution. As a result, functional brain connectivity assessed with different neuroimaging modalities (EEG, MEG, fMRI) may also change over different time scales. In addition to the more commonly used sliding window techniques, the General Linear Kalman Filter (GLFK) approach has been proposed to estimate time-varying brain connectivity. In the present work, we propose a modification of the GLFK approach to model timevarying connectivity. We also propose a systematic method to select the hyper-parameters of the model. We evaluate the performance of the method using MEG and EMG data collected from 12 young subjects performing two motor tasks (unimanual and bimanual hand grips), by quantifying time-varying cortico-cortical and corticomuscular coherence (CCC and CMC). The CMC results revealed patterns in accordance with earlier findings, as well as an improvement in both time and frequency resolution compared to sliding window approaches. These results suggest that the proposed methodology is able to unveil accurate time-varying connectivity patterns with an excellent time resolution.
在静息和任务执行期间,神经群体在快速的亚秒级时间尺度上进行协调。因此,使用不同神经成像模态(脑电图、脑磁图、功能磁共振成像)评估的功能性脑连接性也可能在不同的时间尺度上发生变化。除了更常用的滑动窗口技术外,还提出了通用线性卡尔曼滤波器(GLFK)方法来估计随时间变化的脑连接性。在本研究中,我们提出了对GLFK方法的一种修改,以对随时间变化的连接性进行建模。我们还提出了一种系统的方法来选择模型的超参数。我们使用从12名年轻受试者执行两项运动任务(单手和双手握力)时收集的脑磁图和肌电图数据,通过量化随时间变化的皮质-皮质和皮质-肌肉相干性(CCC和CMC)来评估该方法的性能。CMC结果揭示了与早期研究结果一致的模式,并且与滑动窗口方法相比,在时间和频率分辨率方面都有改进。这些结果表明,所提出的方法能够以出色的时间分辨率揭示准确的随时间变化的连接模式。