Suppr超能文献

使用卷积神经网络学习前端滤波器组参数用于异常心音检测。

Learning Front-end Filter-bank Parameters using Convolutional Neural Networks for Abnormal Heart Sound Detection.

作者信息

Humayun Ahmed Imtiaz, Ghaffarzadegan Shabnam, Feng Zhe, Hasan Taufiq

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1408-1411. doi: 10.1109/EMBC.2018.8512578.

Abstract

Automatic heart sound abnormality detection can play a vital role in the early diagnosis of heart diseases, particularly in low-resource settings. The state-of-the-art algorithms for this task utilize a set of Finite Impulse Response (FIR) band-pass filters as a front-end followed by a Convolutional Neural Network (CNN) model. In this work, we propound a novel CNN architecture that integrates the front-end band-pass filters within the network using time-convolution (tConv) layers, which enables the FIR filter-bank parameters to become learnable. Different initialization strategies for the learnable filters, including random parameters and a set of predefined FIR filter-bank coefficients, are examined. Using the proposed tConv layers, we add constraints to the learnable FIR filters to ensure linear and zero phase responses. Experimental evaluations are performed on a balanced 4-fold cross-validation task prepared using the PhysioNet/CinC 2016 dataset. Results demonstrate that the proposed models yield superior performance compared to the state-of-the-art system, while the linear phase FIR filter-bank method provides an absolute improvement of 9.54% over the baseline in terms of an overall accuracy metric.

摘要

自动心音异常检测在心脏病的早期诊断中可以发挥至关重要的作用,尤其是在资源匮乏的环境中。用于此任务的最先进算法利用一组有限脉冲响应(FIR)带通滤波器作为前端,随后是卷积神经网络(CNN)模型。在这项工作中,我们提出了一种新颖的CNN架构,该架构使用时间卷积(tConv)层将前端带通滤波器集成到网络中,这使得FIR滤波器组参数能够被学习。我们研究了可学习滤波器的不同初始化策略,包括随机参数和一组预定义的FIR滤波器组系数。使用所提出的tConv层,我们对可学习的FIR滤波器添加约束,以确保线性和零相位响应。在使用PhysioNet/CinC 2016数据集准备的平衡4折交叉验证任务上进行了实验评估。结果表明,与最先进的系统相比,所提出的模型具有卓越的性能,而线性相位FIR滤波器组方法在整体准确率指标方面比基线绝对提高了9.54%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验