Su Ting-Yi, Wu Jacky Chung-Hao, Chiu Wen-Chi, Chen Tzeng-Ji, Lo Wen-Liang, Lu Henry Horng-Shing
Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
Department of Family Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan.
J Dent Sci. 2025 Jan;20(1):393-401. doi: 10.1016/j.jds.2024.06.001. Epub 2024 Jun 15.
BACKGROUND/PURPOSE: In this study, we utilized magnetic resonance imaging data of the temporomandibular joint, collected from the Division of Oral and Maxillofacial Surgery at Taipei Veterans General Hospital. Our research focuses on the classification and severity analysis of temporomandibular joint disease using convolutional neural networks.
In gray-scale image series, the most critical features often lie within the articular disc cartilage, situated at the junction of the temporal bone and the condyles. To identify this region efficiently, we harnessed the power of You Only Look Once deep learning technology. This technology allowed us to pinpoint and crop the articular disc cartilage area. Subsequently, we processed the image by converting it into the HSV format, eliminating surrounding noise, and storing essential image information in the V value. To simplify age and left-right ear information, we employed linear discriminant analysis and condensed this data into the S and H values.
We developed the convolutional neural network with six categories to identify severe stages in patients with temporomandibular joint (TMJ) disease. Our model achieved an impressive prediction accuracy of 84.73%.
This technology has the potential to significantly reduce the time required for clinical imaging diagnosis, ultimately improving the quality of patient care. Furthermore, it can aid clinical specialists by automating the identification of TMJ disorders.
背景/目的:在本研究中,我们利用了从台北荣民总医院口腔颌面外科收集的颞下颌关节磁共振成像数据。我们的研究重点是使用卷积神经网络对颞下颌关节疾病进行分类和严重程度分析。
在灰度图像序列中,最关键的特征通常位于颞骨和髁突交界处的关节盘软骨内。为了有效地识别该区域,我们利用了“你只看一次”(You Only Look Once)深度学习技术的力量。这项技术使我们能够精确确定并裁剪关节盘软骨区域。随后,我们通过将图像转换为HSV格式、消除周围噪声并将基本图像信息存储在V值中来处理图像。为了简化年龄和左右耳信息,我们采用线性判别分析并将这些数据压缩到S和H值中。
我们开发了具有六个类别的卷积神经网络,以识别颞下颌关节(TMJ)疾病患者的严重阶段。我们的模型实现了令人印象深刻的84.73%的预测准确率。
这项技术有可能显著减少临床影像诊断所需的时间,最终提高患者护理质量。此外,它可以通过自动识别TMJ疾病来帮助临床专家。